請寫出一個(gè)同時(shí)符合下列條件的多項(xiàng)式:①多項(xiàng)式為二次三項(xiàng)式;②各項(xiàng)系數(shù)之和為0.

 

【答案】

2x2-x-1

【解析】本題考查了多項(xiàng)式的知識

根據(jù)題目的要求可直接寫出符合條件的多項(xiàng)式,本題為開放題.

此題為開放題,如:2x2-x-1.

思路拓展:解題時(shí)需要根據(jù)多項(xiàng)式的特點(diǎn)來寫,此題為開放題,比較簡單.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某中學(xué)有一塊長為a米,寬為b米的矩形場地,計(jì)劃在該場地上修筑寬都為2米的兩條互相垂直的道路,余下的四塊矩形小場地建成草坪.
(1)如圖,請分別寫出每條道路的面積(用含a或含b的代數(shù)式表示);
(2)已知a:b=2:1,并且四塊草坪的面積之和為312米2,試求原來矩形場地的長與寬各為多少米?
(3)在(2)的條件下,為進(jìn)一步美化校園,根據(jù)實(shí)際情況,學(xué)校決定對整個(gè)矩形場地作如下設(shè)計(jì)(要求同時(shí)符合下述兩個(gè)條件):
條件①:在每塊草坪上各修建一個(gè)面積盡可能大的菱形花圃(花圃各邊必須分別與所在草坪的對角線平行),并且其中有兩個(gè)花圃的面積之差為13米2
條件②:整個(gè)矩形場地(包括道路、草坪、花圃)為軸對稱圖形.
請你畫出符合上述設(shè)計(jì)方案的一種草圖(不必說明畫法與根據(jù)),并求出每個(gè)菱形花圃的面積.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)有一塊長為a米,寬為b米的矩形場地,計(jì)劃在該場地上修筑寬都為2米的兩條互相垂直的道路,余下的四塊矩形小場地建成草坪.
(1)如圖,請分別寫出每條道路的面積(用含a或含b的代數(shù)式表示);
(2)已知a:b=2:1,并且四塊草坪的面積之和為312米2,試求原來矩形場地的長與寬各為多少米?
(3)在(2)的條件下,為進(jìn)一步美化校園,根據(jù)實(shí)際情況,學(xué)校決定對整個(gè)矩形場地作如下設(shè)計(jì)(要求同時(shí)符合下述兩個(gè)條件):
條件①:在每塊草坪上各修建一個(gè)面積盡可能大的菱形花圃(花圃各邊必須分別與所在草坪的對角線平行),并且其中有兩個(gè)花圃的面積之差為13米2;
條件②:整個(gè)矩形場地(包括道路、草坪、花圃)為軸對稱圖形.
請你畫出符合上述設(shè)計(jì)方案的一種草圖(不必說明畫法與根據(jù)),并求出每個(gè)菱形花圃的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:貴州省同步題 題型:解答題

閱讀下題的解答過程,請你判斷其是否有錯(cuò)誤,若有錯(cuò)誤,請你寫出正確答案。
已知:m是關(guān)于x的方程mx2-2x+m=0的一個(gè)根,求m的值。
解:把x=m代人原方程,化簡得m3=m,
兩邊同時(shí)除以m,得m2=1,
所以m=l,
把m=l代入原方程檢驗(yàn)可知:m=1符合題意,
答:m的值是1。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2002•泉州)某中學(xué)有一塊長為a米,寬為b米的矩形場地,計(jì)劃在該場地上修筑寬都為2米的兩條互相垂直的道路,余下的四塊矩形小場地建成草坪.
(1)如圖,請分別寫出每條道路的面積(用含a或含b的代數(shù)式表示);
(2)已知a:b=2:1,并且四塊草坪的面積之和為312米2,試求原來矩形場地的長與寬各為多少米?
(3)在(2)的條件下,為進(jìn)一步美化校園,根據(jù)實(shí)際情況,學(xué)校決定對整個(gè)矩形場地作如下設(shè)計(jì)(要求同時(shí)符合下述兩個(gè)條件):
條件①:在每塊草坪上各修建一個(gè)面積盡可能大的菱形花圃(花圃各邊必須分別與所在草坪的對角線平行),并且其中有兩個(gè)花圃的面積之差為13米2;
條件②:整個(gè)矩形場地(包括道路、草坪、花圃)為軸對稱圖形.
請你畫出符合上述設(shè)計(jì)方案的一種草圖(不必說明畫法與根據(jù)),并求出每個(gè)菱形花圃的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2002•泉州)某中學(xué)有一塊長為a米,寬為b米的矩形場地,計(jì)劃在該場地上修筑寬都為2米的兩條互相垂直的道路,余下的四塊矩形小場地建成草坪.
(1)如圖,請分別寫出每條道路的面積(用含a或含b的代數(shù)式表示);
(2)已知a:b=2:1,并且四塊草坪的面積之和為312米2,試求原來矩形場地的長與寬各為多少米?
(3)在(2)的條件下,為進(jìn)一步美化校園,根據(jù)實(shí)際情況,學(xué)校決定對整個(gè)矩形場地作如下設(shè)計(jì)(要求同時(shí)符合下述兩個(gè)條件):
條件①:在每塊草坪上各修建一個(gè)面積盡可能大的菱形花圃(花圃各邊必須分別與所在草坪的對角線平行),并且其中有兩個(gè)花圃的面積之差為13米2;
條件②:整個(gè)矩形場地(包括道路、草坪、花圃)為軸對稱圖形.
請你畫出符合上述設(shè)計(jì)方案的一種草圖(不必說明畫法與根據(jù)),并求出每個(gè)菱形花圃的面積.

查看答案和解析>>

同步練習(xí)冊答案