如圖,已知AB是圓O的直徑,AC是弦,AB=2,AC=數(shù)學公式,在圖中畫出弦AD,使AD=1,并求出∠CAD的度數(shù).

解:
分為兩種情況:①如圖1,過O作OE⊥AD于E,作OF⊥AC于F,
由垂徑定理得:AE=AD=,AF=AC=
∵OA=AB=1,
在△AEO和△AFO中,cos∠EAO==,cos∠FAO==,
∴∠EAO=60°,∠FAO=45°,
∴∠DAC=∠DAO-∠CAO=60°-45°=15°;
②如圖2,∠DAC=60°+45°=105°.
分析:根據(jù)題意畫出兩個圖形,過O作OE⊥AD于E,作OF⊥AC于F,求出AE、AF,根據(jù)三角函數(shù)值求出∠EAO和∠FAO,即可求出答案.
點評:本題考查了垂徑定理,特殊角的三角函數(shù)值等知識點的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,已知AB是圓O的弦,AC是圓O的切線,∠BAC的平分線交圓O于D,連BD并延長交AC于點C,若∠DAC=40°,則∠B=
40
度,∠ADC=
80
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:已知AB是圓O的直徑,BC是圓O的弦,圓O的割線DEF垂直于AB于點G,交BC于點H,DC=DH.
(1)求證:DC是圓O的切線;
(2)請你再添加一個條件,可使結論BH2=BG•BO成立,說明理由;
(3)在滿足以上所有的條件下,AB=10,EF=8.求sin∠A的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是圓O的直徑,DC是圓O的切線,點C是切點,AD⊥DC垂足為D,且與圓O相交于點E.
(1)求證:∠DAC=∠BAC,
(2)若圓O的直徑為5cm,EC=3cm,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•上海)如圖,已知AB是圓O的直徑,AC是弦,AB=2,AC=
2
,在圖中畫出弦AD,使AD=1,并求出∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案