精英家教網 > 初中數學 > 題目詳情
如果m、n是兩個不相等的實數,且滿足m2-2m=1,n2-2n=1,那么(m+n)-(mn)=   
【答案】分析:由于m2-2m=1和n2-2n=1形式相同,所以可將m、n看作一元二次方程x2-2x-1=0的解,然后根據根與系數的關系解答.
解答:解:因為m2-2m=1,n2-2n=1,
所以設m、n為一元二次方程x2-2x-1=0的解,
于是m+n=2,mn=-1,
所以(m+n)-(mn)=2-(-1)=3.
點評:此題考查了對一元二次方程根與系數關系的理解,有一定難度,要仔細觀察才能發(fā)現m、n為同一方程的解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,菱形鐵片ABCD的對角線AC,DB相交于點E,sin∠DAC=
35
,AE、DE的長是方程x2-140x+k=0的兩根.
(1)求AD的長;
(2)如果M,N是AC上的兩個動點,分別以M,N為圓心作圓,使⊙M與邊從AB、AD相切,⊙N與邊BC,CD相切,且⊙M與⊙N相外切,設AM=t,⊙M與⊙N面積的和為S,求S關于t的函數關系式;
(3)某工廠要利用這種菱形鐵片(單位:mm)加工一批直徑為48mm,60mm,90mm的圓精英家教網形零件(菱形鐵片上只能加工同一直徑的零件,不計加工過程中的損耗),問加工哪種零件能最充分地利用這種鐵片并說明理由.

查看答案和解析>>

科目:初中數學 來源:三點一測叢書九年級數學上 題型:044

關于多項式除以多項式

兩個多項式相除,可以先把這兩個多項式都按照同一字母降冪排列,然后再仿照兩個多位數相除的計算方法,用豎式進行計算.例如,我們來計算(7x+2+6x2)÷(2x+1),仿照672÷21,計算如下:

  所以(7x+2+6x2)÷(2x+1)=3x+2.

  由上面的計算可知計算步驟大體是:先用除式的第一項2x去除被除式的第一項6x2,得商式的第一項3x,然后用3x去乘除式,把積6x2+3x寫在被除式下面(同類項對齊),從被除武中減去這個積,得4x+2,再把4x+2當作新的被除式,按照上面的方法繼續(xù)計算,直到得出余式為止.上式的計算結果,余式等于0.如果一個多項式除以另一個多項式的余式為0,我們就說這個多項式能被另一個多項式整除,這時也可以說除式能整除被除式.

  整式除法也有不能整除的情況.按照某個字母降冪排列的整式除法,當余式不是0而次數低于除式的次數時,除法計算就不能繼續(xù)進行了,這說明除式不能整除被除式.例如,計算(9x2+2x3+5)÷(4x-3+x2).

  解:

  所以商式為2x+1,余式為2x+8.

  與數的帶余除法類似,上面的計算結果有下面的關系:9x2+2x3+5=(4x-3+x2)(2x+1)+(2x+8).這里應當注意,按照x的降冪排列,如果被除式有缺項,一定要留出空位.當然,也可用補0的辦法補足缺項.

請你用上面的方法計算下面這道題:(6x3+x2-1)÷(2x-1).

查看答案和解析>>

科目:初中數學 來源:精編教材全解 數學 九年級上冊 (配蘇科版) 蘇科版 題型:013

在一元二次方程ax2+bx+c=0(a≠0)中,如果a與c符號相異,那么方程(  ).

[  ]

A.有兩個不相等的實數根

B.有兩個相等的實數根

C.有一個實數根是0

D.沒有實數根

查看答案和解析>>

科目:初中數學 來源:中華題王 數學 九年級上 (北師大版) 北師大版 題型:044

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數根x1,x2

(1)求k的取值范圍.

(2)是否存在實數k,使方程的兩實數根互為相

反數?如果存在,求出k的值;如果不存在,請說明理由.

解:(1)根據題意,得

△=(2k-3)2-4(k-1)(k+1)

=4k2-12k+9-4k2+4

=-12k+13>0

∴k<

∴k<時,方程有兩個不相等的實數根.

(2)存在.如果方程的兩個實數根互為相反數,則

x1+x2=0

解得k=.檢驗知,k==0的解.

所以,當k=時,方程的兩個實數根x1與x2互為相反數.

當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確的答案.

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

在一元二次方程ax2+bx+c=0(a≠0)中,如果a與c符號相異,那么方程.


  1. A.
    有兩個不相等的實數根
  2. B.
    有兩個相等的實數根
  3. C.
    有一個實數根是0
  4. D.
    沒有實數根

查看答案和解析>>

同步練習冊答案