已知:在平面直角坐標(biāo)系xOy中,過點(diǎn)P(0,2)任作一條與拋物線y=ax2(a>0)交于兩點(diǎn)的直線,設(shè)交點(diǎn)分別為A、B.若∠AOB=90°.
(1)判斷A、B兩點(diǎn)縱坐標(biāo)的乘積是否為一個(gè)確定的值,并說明理由;
(2)確定拋物線y=ax2(a>0)的解析式;
(3)當(dāng)△AOB的面積為4數(shù)學(xué)公式時(shí),求直線AB的解析式.

解:(1)A、B兩點(diǎn)縱坐標(biāo)的乘積是一個(gè)確定的值,理由如下:
設(shè)直線AB的解析式為y=kx+2,

得ax2-kx-2=0.
設(shè)A(x1,y1),B(x2,y2),且x1<x2
則x1,x2為方程ax2-kx-2=0的兩個(gè)實(shí)數(shù)根
∴x1+x2=,x1•x2=-
∴y1•y2=ax12•ax22=a2(x1•x22=a2•(-2=4.
∴A、B兩點(diǎn)縱坐標(biāo)的乘積為常數(shù)4,是一個(gè)確定的值;

(2)解法一:作AM⊥x軸于點(diǎn)M,BN⊥x軸于點(diǎn)N(如圖)
∵∠AOB=90°
∴∠AOM+∠BON=90°
又∠OBN+∠BON=90°
∴∠AOM=∠OBN
∴Rt△AOM∽R(shí)t△OBN
(注:寫為同樣正確)
∴-=
∴-x1•x2=y1•y2
∴-(-)=4
a=
∴所求拋物線的解析式為y=
解法二:當(dāng)直線AB平行于x軸時(shí)(如圖),
由拋物線的對(duì)稱性可知,A、B兩點(diǎn)關(guān)于y軸對(duì)稱
∵∠AOB=90°
∴△AOB為等腰直角三角形
∴AP=PB=OP=2
∴B(2,2)
將x=2,y=2代入y=ax2
得a=
∴所求拋物線的解析式為
y=x2

(3)作AE⊥y軸于點(diǎn)E,BF⊥y軸于點(diǎn)F(如圖)
∴AE=MO,F(xiàn)B=ON
∵S△AOB=S△AOP+S△BOP
=OP•AE+OP•FB
=×2(-x1+x2
=x2-x1
=
=
=
=2
又S△AOB=4
=2
由算術(shù)平方根的概念可得k2=4,k=±2
∴直線AB的解析式為y=2x+2或y=-2x+2.
分析:(1)應(yīng)該是一個(gè)定值,可先設(shè)出直線AB的解析式,然后聯(lián)立拋物線的解析式可得出一個(gè)關(guān)于x的方程,那么A,B兩點(diǎn)的橫坐標(biāo)即為這個(gè)方程的兩個(gè)根,然后可通過韋達(dá)定理求出A,B兩點(diǎn)縱坐標(biāo)積的值;
(2)可通過構(gòu)建相似三角形來求解.作AM⊥x軸于點(diǎn)M,BN⊥x軸于點(diǎn)N,可通過相似三角形AMO和BNO得出關(guān)于AM,OM,BN,ON的比例關(guān)系式,其中,AM,OM分別為A點(diǎn)的縱坐標(biāo)和橫坐標(biāo)的絕對(duì)值,BN,ON分別為B點(diǎn)縱坐標(biāo)和橫坐標(biāo),由此可仿照(1)通過韋達(dá)定理來求出a的值,即可得出拋物線的解析式;
(本題也可通過特殊值來求解,如設(shè)直線AB與x軸平行等)
(3)本題還用通過韋達(dá)定理來求解.可將三角形AOB分成兩部分來求其面積.在三角形AOP中,可以O(shè)P為底,A的橫坐標(biāo)的絕對(duì)值為高,來求出三角形AOP的面積,同理可表示出三角形OBP的面積,然后根據(jù)韋達(dá)定理和三角形AOB的面積即可求出k的值.也就求出了直線AB的解析式.
點(diǎn)評(píng):考查一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)解析式的確定、圖形的面積求法、函數(shù)圖象交點(diǎn)等知識(shí)及綜合應(yīng)用知識(shí)、解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)xOy中,反比例函數(shù)y=
k
x
的圖象與y=
3
x
的圖象關(guān)于x軸對(duì)稱,又與直線y=ax+2交于點(diǎn)A(m,3).已知點(diǎn)M(-3,y1)、N(l,y2)和Q(3,y3)三點(diǎn)都在反比例函數(shù)y=
k
x
的圖象上. 
(l)比較y1、y2、y3的大;
(2)試確定a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系里,如圖,已知直線:y=-x+3
2
交y軸于點(diǎn)A,交x軸于點(diǎn)B,三角板OCD如圖1置,其中∠D=30°,∠OCD=90°,OD=7,把三角板OCD繞點(diǎn).順時(shí)針旋轉(zhuǎn)15°,得到△OC1D1(如圖2),這時(shí)OC1交AB于點(diǎn)E,C1D1交AB于點(diǎn)F.
(1)求∠EFC1的度數(shù);
(2)求線段AD1的長(zhǎng);
(3)若把△OC1D1,繞點(diǎn)0順時(shí)針再旋轉(zhuǎn)30.得到△OC2D2,這時(shí)點(diǎn)B在△OC2D2的內(nèi)部、外部、還是邊上?證明你的判斷.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)中,已知點(diǎn)P(3-m,2m-4)在第一象限,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,已知直線y=kx+b與直線y=
1
2
x
平行,分別交x軸,y軸于A,B兩點(diǎn),且A點(diǎn)的橫坐標(biāo)是-4,以AB為邊在第二象限內(nèi)作矩形ABCD,使AD=
5

(1)求矩形ABCD的面積;
(2)過點(diǎn)D作DH⊥x軸,垂足為H,試求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為
y=-
6
x
y=-
6
x

查看答案和解析>>

同步練習(xí)冊(cè)答案