(2000•遼寧)如圖,⊙O中的弦BC=6cm,圓周角∠BAC=60°,求圖中陰影部分的面積.(結(jié)果不取近似值)

【答案】分析:連接OB、OC,作OD⊥BC于D.
陰影部分的面積即為扇形OBC的面積減去三角形OBC的面積.
根據(jù)圓周角定理求得∠BOC的度數(shù),根據(jù)三角形的內(nèi)角和定理和等腰三角形的性質(zhì)求得∠OCB的度數(shù),再根據(jù)銳角三角函數(shù)的知識求得OD、OC的長,從而進一步求解.
解答:解:連接OB、OC,作OD⊥BC于D.
∵圓心角∠BOC與圓周角∠BAC對的弧都為,且∠BAC=60°,
∴∠BOC=2∠BAC=120°.
∵OB=OC,
∴∠OBC=∠OCB=30°.
∵OD⊥BC,
∴D為BC中點,又BC=6,
∴CD=3.
∴OD=,OC=2
∴陰影部分的面積=-×6×=4π-3
點評:此題綜合運用了垂徑定理、圓周角定理、等腰三角形的性質(zhì)、三角形的內(nèi)角和定理以及銳角三角函數(shù)的知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圓》(06)(解析版) 題型:解答題

(2000•遼寧)如圖,以坐標(biāo)原點O為圓心,6為半徑的圓交y軸于A、B兩點.AM、BN為⊙O的切線.D是切線AM上一點(D與A不重合),DE切⊙O于點E,與BN交于點C,且AD<BC.設(shè)AD=m,BC=n.
(1)求m•n的值;
(2)若m、n是方程2t2-30t+k=0的兩根.求:
①△COD的面積;
②CD所在直線的解析式;
③切點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圓》(05)(解析版) 題型:解答題

(2000•遼寧)如圖,在直角坐標(biāo)系中,以x軸上一點P(1,0)為圓心的圓與x軸、y軸分別交于A、B、C、D四點,點C的坐標(biāo)為(0,).
(1)直接寫出A、B、D三點坐標(biāo);
(2)若拋物線y=x2+bx+c過A、D兩點,求這條拋物線的解析式,并判斷點B是否在所求的拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:解答題

(2000•遼寧)如圖,在直角坐標(biāo)系中,以x軸上一點P(1,0)為圓心的圓與x軸、y軸分別交于A、B、C、D四點,點C的坐標(biāo)為(0,).
(1)直接寫出A、B、D三點坐標(biāo);
(2)若拋物線y=x2+bx+c過A、D兩點,求這條拋物線的解析式,并判斷點B是否在所求的拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2000•遼寧)如圖,在直角坐標(biāo)系中,以x軸上一點P(1,0)為圓心的圓與x軸、y軸分別交于A、B、C、D四點,點C的坐標(biāo)為(0,).
(1)直接寫出A、B、D三點坐標(biāo);
(2)若拋物線y=x2+bx+c過A、D兩點,求這條拋物線的解析式,并判斷點B是否在所求的拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年遼寧省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•遼寧)如圖,以坐標(biāo)原點O為圓心,6為半徑的圓交y軸于A、B兩點.AM、BN為⊙O的切線.D是切線AM上一點(D與A不重合),DE切⊙O于點E,與BN交于點C,且AD<BC.設(shè)AD=m,BC=n.
(1)求m•n的值;
(2)若m、n是方程2t2-30t+k=0的兩根.求:
①△COD的面積;
②CD所在直線的解析式;
③切點E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案