恩施州自然風(fēng)光無(wú)限,特別是以“雄、奇、秀、幽、險(xiǎn)”著稱于世.著名的恩施大峽谷(A)和世界級(jí)自然保護(hù)區(qū)星斗山(B)位于筆直的滬渝高速公路X同側(cè),AB=50km,A、B到直線x的距離分別為10km和40km,要在滬渝高速公路旁修建一服務(wù)區(qū)P,向A、B兩景區(qū)運(yùn)送游客.小民設(shè)計(jì)了兩種方案,圖(1)是方案一的示意圖(AP與直線X垂直,垂足為P),P到A、B的距離之和S1=PA+PB,圖(2)是方案二的示意圖(點(diǎn)A關(guān)于直線X的對(duì)稱點(diǎn)是A',連接BA'交直線X于點(diǎn)P),P到A、B的距離之和S2=PA+PB.
(1)求S1、S2,并比較它們的大。
(2)請(qǐng)你說(shuō)明S2=PA+PB的值為最;
(3)擬建的恩施到張家界高速公路Y與滬渝高速公路垂直,建立如圖(3)所示的直角坐標(biāo)系,B到直線Y的距離為30km,請(qǐng)你在X旁和Y旁各修建一服務(wù)區(qū)P、Q,使P、A、B、Q組成的四邊形的周長(zhǎng)最。⑶蟪鲞@個(gè)最小值.

解:(1)圖(1)中過(guò)B作BC⊥X于C,垂足為C;AD⊥BC于D,垂足為D,
則BC=40,
又∵AP=10,
∴BD=BC-CD=40-10=30.
在△ABD中,AD==40,
在Rt△PBC中,
∴BP=,
S1=
圖(2)中,過(guò)B作BC⊥AA′垂足為C,則A′C=50,
又∵BC=40,
∴BA'=
由軸對(duì)稱知:PA=PA',
∴S2=BA'=,
∴S1>S2

(2)如圖(2),在公路上任找一點(diǎn)M,連接MA,MB,MA',由軸對(duì)稱知MA=MA',
∴MB+MA=MB+MA'>A'B,
∴S2=BA'為最小.

(3)過(guò)A作關(guān)于X軸的對(duì)稱點(diǎn)A',過(guò)B作關(guān)于Y軸的對(duì)稱點(diǎn)B',
連接A'B',交X軸于點(diǎn)P,交Y軸于點(diǎn)Q,則P,Q即為所求.
過(guò)A'、B'分別作X軸、Y軸的平行線交于點(diǎn)G,
B′G=40+10=50,A′G=30+30+40=100,
A'B'=,
∴AB+AP+BQ+QP=AB+A′P+PQ+B′Q=50+50
∴所求四邊形的周長(zhǎng)為
分析:(1)根據(jù)勾股定理分別求得S1、S2的值,比較即可;
(2)在公路上任找一點(diǎn)M,連接MA,MB,MA',由軸對(duì)稱知MA=MA,∴MB+MA=MB+MA'>A'B,∴S2=BA'為最小;
(3)過(guò)A作關(guān)于X軸的對(duì)稱點(diǎn)A',過(guò)B作關(guān)于Y軸的對(duì)稱點(diǎn)B',連接A'B',交X軸于點(diǎn)P,交Y軸于點(diǎn)Q,求出A'B'的值即可.
點(diǎn)評(píng):此題考查了線路最短的問(wèn)題,確定動(dòng)點(diǎn)為何位置是關(guān)鍵,綜合運(yùn)用勾股定理的知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

恩施州自然風(fēng)光無(wú)限,特別是以“雄、奇、秀、幽、險(xiǎn)”著稱于世.著名的恩施大峽谷(A)和世界級(jí)自然保護(hù)區(qū)星斗山(B)位于筆直的滬渝高速公路X同側(cè),AB=50km,A、B到直線x的距離分別為10km和40km,要在滬渝高速公路旁修建一服務(wù)區(qū)P,向A、B兩景區(qū)運(yùn)送游客.小民設(shè)計(jì)了兩種方案,圖(1)是方案一的示意圖(AP與直線X垂直,垂足為P),P到A、B的距離之和S1=PA+PB,圖(2)是方案二的示意圖(點(diǎn)A關(guān)于直線X的對(duì)稱點(diǎn)是A',連接BA'交直線X于點(diǎn)P),P到A、B的距離之和S2=PA+PB.
(1)求S1、S2,并比較它們的大小;
(2)請(qǐng)你說(shuō)明S2=PA+PB的值為最;
(3)擬建的恩施到張家界高速公路Y與滬渝高速公路垂直,建立如圖(3)所示的直角坐標(biāo)系,B到直線Y的距離為30km,請(qǐng)你在X旁和Y旁各修建一服務(wù)區(qū)P、Q,使P、A、B、Q組成的四邊形的周長(zhǎng)最。⑶蟪鲞@個(gè)最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

恩施州自然風(fēng)光無(wú)限,特別是以“雄、奇、秀、幽、險(xiǎn)”著稱于世.著名的恩施大峽谷(A)和世界級(jí)自然保護(hù)區(qū)星斗山(B)位于筆直的滬渝高速公路X同側(cè),AB=50km,A、B到直線X的距離分別為10km和40km,要在滬渝高速公路旁修建一服務(wù)區(qū)P,向A、B兩景區(qū)運(yùn)送游客.小民設(shè)計(jì)了兩種方案,圖(1)是方案一的示意圖(AP與直線X垂直,垂足為P),P到A、B的距離之和S1=PA+PB; 圖(2)是方案二的示意圖(點(diǎn)A關(guān)于直線X的對(duì)稱點(diǎn)是A',連接BA'交直線X于點(diǎn)P),P到A、B的距離之和S2=PA+PB. 

(1).求S1 、S2 ,并比較它們的大小.

(2).請(qǐng)你說(shuō)明S2=PA+PB的值為最小.

(3).擬建的恩施到張家界高速公路Y與滬渝高速公路垂直,

建立如圖所示的直角坐標(biāo)系,B到直線Y的距離為30km,請(qǐng)你在X旁和Y旁各修建一服務(wù)區(qū)P、Q,使P、A、B、Q 組成的四邊形的周長(zhǎng)最小.并求出這個(gè)最小值.



  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:湖北省中考真題 題型:解答題

恩施州自然風(fēng)光無(wú)限,特別是以“雄、奇、秀、幽、險(xiǎn)”著稱于世,著名的恩施大峽谷(A)和世界級(jí)自然保護(hù)區(qū)星斗山(B)位于筆直的滬渝高速公路X同側(cè),AB=50km,B到直線X的距離分別為10km和40km,要在滬渝高速公路旁修建一服務(wù)區(qū)P,向A、B兩景區(qū)運(yùn)送游客,小民設(shè)計(jì)了兩種方案,圖(1)是方案一的示意圖(AP與直線X垂直,垂足為P),P到A、B的距離之和S1=PA+PB,圖(2)是方案二的示意圖(點(diǎn)A關(guān)于直線X的對(duì)稱點(diǎn)是A',連接BA'交直線X于點(diǎn)P),P到A、B的距離之和S2=PA+PB。
(1)求S1、S2,并比較它們的大;
(2)請(qǐng)你說(shuō)明S2=PA+PB的值為最小;
(3)擬建的恩施到張家界高速公路Y與滬渝高速公路垂直,建立如圖(3)所示的直角坐標(biāo)系,B到直線Y的距離為30km,請(qǐng)你在X旁和Y旁各修建一服務(wù)區(qū)P、Q,使P、A、B、Q組成的四邊形的周長(zhǎng)最小,并求出這個(gè)最小值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初三下學(xué)期數(shù)學(xué)好題難題集錦(解析版) 題型:解答題

恩施州自然風(fēng)光無(wú)限,特別是以“雄、奇、秀、幽、險(xiǎn)”著稱于世.著名的恩施大峽谷(A)和世界級(jí)自然保護(hù)區(qū)星斗山(B)位于筆直的滬渝高速公路X同側(cè),AB=50km,A、B到直線x的距離分別為10km和40km,要在滬渝高速公路旁修建一服務(wù)區(qū)P,向A、B兩景區(qū)運(yùn)送游客.小民設(shè)計(jì)了兩種方案,圖(1)是方案一的示意圖(AP與直線X垂直,垂足為P),P到A、B的距離之和S1=PA+PB,圖(2)是方案二的示意圖(點(diǎn)A關(guān)于直線X的對(duì)稱點(diǎn)是A',連接BA'交直線X于點(diǎn)P),P到A、B的距離之和S2=PA+PB.
(1)求S1、S2,并比較它們的大;
(2)請(qǐng)你說(shuō)明S2=PA+PB的值為最小;
(3)擬建的恩施到張家界高速公路Y與滬渝高速公路垂直,建立如圖(3)所示的直角坐標(biāo)系,B到直線Y的距離為30km,請(qǐng)你在X旁和Y旁各修建一服務(wù)區(qū)P、Q,使P、A、B、Q組成的四邊形的周長(zhǎng)最。⑶蟪鲞@個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《圖形的對(duì)稱》(04)(解析版) 題型:解答題

(2009•恩施州)恩施州自然風(fēng)光無(wú)限,特別是以“雄、奇、秀、幽、險(xiǎn)”著稱于世.著名的恩施大峽谷(A)和世界級(jí)自然保護(hù)區(qū)星斗山(B)位于筆直的滬渝高速公路X同側(cè),AB=50km,A、B到直線x的距離分別為10km和40km,要在滬渝高速公路旁修建一服務(wù)區(qū)P,向A、B兩景區(qū)運(yùn)送游客.小民設(shè)計(jì)了兩種方案,圖(1)是方案一的示意圖(AP與直線X垂直,垂足為P),P到A、B的距離之和S1=PA+PB,圖(2)是方案二的示意圖(點(diǎn)A關(guān)于直線X的對(duì)稱點(diǎn)是A',連接BA'交直線X于點(diǎn)P),P到A、B的距離之和S2=PA+PB.
(1)求S1、S2,并比較它們的大;
(2)請(qǐng)你說(shuō)明S2=PA+PB的值為最。
(3)擬建的恩施到張家界高速公路Y與滬渝高速公路垂直,建立如圖(3)所示的直角坐標(biāo)系,B到直線Y的距離為30km,請(qǐng)你在X旁和Y旁各修建一服務(wù)區(qū)P、Q,使P、A、B、Q組成的四邊形的周長(zhǎng)最小.并求出這個(gè)最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案