【題目】深圳市某學(xué)校對(duì)學(xué)生的上學(xué)方式進(jìn)行抽樣調(diào)查,A類學(xué)生騎共享單車,B類學(xué)生坐公交車,私家車,C類學(xué)生步行,D類學(xué)生用其他方式,根據(jù)調(diào)查結(jié)果繪制了完整的統(tǒng)計(jì)圖

(1)樣本容量_____________,a=_________。

(2)補(bǔ)全條形統(tǒng)計(jì)圖。

(3)若該校有3000人,則騎共享單車的有多少人?

【答案】300 32%

【解析】

(1)根據(jù)條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖可以求得樣本容量和a的值;

(2)求出C類學(xué)生人數(shù),畫出條形圖即可;

(3)用樣本估計(jì)總體的思想即可解決問題.

: (1)樣本容量就是36÷12%=300人,a就等于96÷300=32%.

(2)36%×300=108.條形圖如圖所示,

(3)騎共享單車的人數(shù)3000×(1-36%-12%-32%)=600.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=ax2 x+c經(jīng)過原點(diǎn)O與點(diǎn)A(6,0)兩點(diǎn),過點(diǎn)A作AC⊥x軸,交直線y=2x﹣2于點(diǎn)C,且直線y=2x﹣2與x軸交于點(diǎn)D.

(1)求拋物線的解析式,并求出點(diǎn)C和點(diǎn)D的坐標(biāo);
(2)求點(diǎn)A關(guān)于直線y=2x﹣2的對(duì)稱點(diǎn)A′的坐標(biāo),并判斷點(diǎn)A′是否在拋物線上,并說明理由;
(3)點(diǎn)P(x,y)是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交線段CA′于點(diǎn)Q,設(shè)線段PQ的長為l,求l與x的函數(shù)關(guān)系式及l(fā)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D、E分別為AB、AC的中點(diǎn),則△ADE與△ABC的面積比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗購買學(xué)習(xí)用品的收據(jù)如表,因污損導(dǎo)致部分?jǐn)?shù)據(jù)無法識(shí)別,根據(jù)下表,解決下列問題:
(1)小麗買了自動(dòng)鉛筆、記號(hào)筆各幾支?
(2)若小麗再次購買軟皮筆記本和自動(dòng)鉛筆兩種文具,共花費(fèi)15元,則有哪幾種不同的購買方案?

商品名

單價(jià)(元)

數(shù)量(個(gè))

金額(元)

簽字筆

3

2

6

自動(dòng)鉛筆

1.5

記號(hào)筆

4

軟皮筆記本

2

9

圓規(guī)

3.5

1

合計(jì)

8

28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6的正方形紙片ABCD對(duì)折,使AB與DC重合,折痕為EF,展平后,再將點(diǎn)B折到邊CD上,使邊AB經(jīng)過點(diǎn)E,折痕為GH,點(diǎn)B的對(duì)應(yīng)點(diǎn)為M,點(diǎn)A的對(duì)應(yīng)點(diǎn)為N

(1)若CM=x,則CH=(用含x的代數(shù)式表示);
(2)求折痕GH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長春外國語學(xué)校為了創(chuàng)建全省“最美書屋”,購買了一批圖書,其中科普類圖書平均每本的價(jià)格比文學(xué)類圖書平均每本的價(jià)格多5.已知學(xué)校用12000元購買的科普類圖書的本數(shù)與用9000元購買的文學(xué)類圖書的本數(shù)相等,求學(xué)校購買的科普類圖書和文學(xué)類圖書平均每本的價(jià)格各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖,點(diǎn)M、N把線段AB分割成AMMN、NB,若以AMMN、NB為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M、N是線段AB的勾股分割點(diǎn).

1)已知MN把線段AB分割成AM、MN、NB,若AM=1.5,MN=2.5BN=2,則點(diǎn)M、N是線段AB的勾股分割點(diǎn)嗎?請(qǐng)說明理由.

2)已知點(diǎn)M、N是線段AB的勾股分割點(diǎn),且AM為直角邊,若AB=24,AM=6,求BN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,第一個(gè)正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)D的坐標(biāo)為(0,4),延長CBx軸于點(diǎn)A1,作第二個(gè)正方形A1B1C1C;延長C1B1x軸于點(diǎn)A2,作第三個(gè)正方形A2B2C2C1按這樣的規(guī)律進(jìn)行下去,第2018個(gè)正方形的面積為(  )

A. 20×(2017 B. 20×(2018 C. 20×(4036 D. 20×(4034

查看答案和解析>>

同步練習(xí)冊(cè)答案