【題目】作圖題:如圖,在平面直角坐標(biāo)系中,,,

1)畫出邊上的高CH;

2)將平移到(點(diǎn)和點(diǎn)對應(yīng),點(diǎn)和點(diǎn)對應(yīng),點(diǎn)和點(diǎn)對應(yīng)),若點(diǎn)的坐標(biāo)為,請畫出平移后的;

3)若為平面內(nèi)一點(diǎn),且滿足全等,請直接寫出點(diǎn)的坐標(biāo).

【答案】1)見詳解;(2)見詳解;(3(34)(3,-4)(1,4)(1,-4)

【解析】

(1)根據(jù)三角形高的定義畫出圖形即可;
(2)先算出每個(gè)點(diǎn)平移后對應(yīng)點(diǎn)的坐標(biāo),利用平移的性質(zhì)畫出圖形即可;

(3)根據(jù)三角形全等的定義和判斷,由DM=CH=2,即可找到N點(diǎn)的坐標(biāo)使得全等;

解:(1)過點(diǎn)CCPAB,交BA的延長線于點(diǎn)P,則CP就是△ABCAB邊上的高;


2)點(diǎn)A-41)平移到點(diǎn)D1,0),平移前后橫坐標(biāo)加5,縱坐標(biāo)減1,
因此:點(diǎn)B、C平移前后坐標(biāo)也作相應(yīng)變化,
即:點(diǎn)B-1,1)平移到點(diǎn)E4,0),
點(diǎn)C-53)平移到點(diǎn)F0,2),
平移后的△DEF如上圖所示;

(3) 當(dāng),為平面內(nèi)一點(diǎn),且滿足全等時(shí),此時(shí)DM的長度為2,剛好與CH的長度相等,又BH的長度等于4,根據(jù)三角形全等的性質(zhì)(對應(yīng)邊相等),

如下圖,可以找到4點(diǎn)N,

N點(diǎn)的坐標(biāo)為:(3,4)(3,-4)(1,4)(1,-4)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三角形ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點(diǎn),DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,則△DEF的面積與△ABC的面積之比等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)E,F分別在ABCD上,AFCE,垂足為點(diǎn)O,∠1=∠B

A+290°.求證:ABCD

證明:如圖,

∵∠1=∠B(已知)

CEBF(同位角相等,兩直線平行)

______________

∴∠AFC+290°(等式性質(zhì))

∵∠A+290°(已知)

∴∠AFC=∠A(同角或等角的余角相等)

ABCD(內(nèi)錯(cuò)角相等,兩直線平行)

請你仔細(xì)觀察下列序號所代表的內(nèi)容:

①∴∠AOE90°(垂直的定義)

②∴∠AFB90°(等量代換)

③∵AFCE(已知)

④∵∠AFC+AFB+2180°(平角的定義)

⑤∴∠AOE=∠AFB(兩直線平行,同位角相等)

橫線處應(yīng)填寫的過程,順序正確的是( 。

A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是⊙O的切線,切點(diǎn)為A,AB是⊙O的弦.過點(diǎn)B作BC∥AD,交⊙O于點(diǎn)C,連接AC,過點(diǎn)C作CD∥AB,交AD于點(diǎn)D.連接AO并延長交BC于點(diǎn)M,交過點(diǎn)C的直線于點(diǎn)P,且∠BCP=∠ACD.

(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;
(2)若AB=9,BC=6.求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),正方形ABCD中的頂點(diǎn)B,D的坐標(biāo)分別是(0,0),(2,0),且A,C兩點(diǎn)關(guān)于x軸對稱,則C點(diǎn)對應(yīng)的坐標(biāo)是( )

A.(1,1)
B.(1,﹣1)
C.(1,﹣2)
D.(2,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,E是AB的中點(diǎn),連接DE并延長交CB的延長線于點(diǎn)F,點(diǎn)G在邊BC上,且GDF=ADF

1求證:ADE≌△BFE;

2連接EG,判斷EG與DF的位置關(guān)系并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為10厘米,點(diǎn)E在邊AB上,且AE=4厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒.

(1)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過2秒后,BPECQP是否全等?請說明理由;

(2)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,則當(dāng)t為何值時(shí),能夠使BPECQP全等;此時(shí)點(diǎn)Q的運(yùn)動速度為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠BAC90°,點(diǎn)DBC上一點(diǎn),將ABD沿AD翻折后得到AED,邊AE交射線BC于點(diǎn)F.(友情提醒:翻折前后的兩個(gè)三角形的對應(yīng)邊相等,對應(yīng)角相等.)

 

1)如圖①,當(dāng)AEBC時(shí),求證:DEAC

2)若,∠BAD

①如圖②,當(dāng)DEBC時(shí),求x的值;

②是否存在這樣的x的值,使得DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)m°得到△EDC,若點(diǎn)A、D、E在同一直線上,∠ACB=n°,則∠ADC的度數(shù)是( 。

A. mn)°B. 90+nm)°C. 90n+m)°D. 1802nm)°

查看答案和解析>>

同步練習(xí)冊答案