在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于

 

A(1,6),B(a,3)兩點 .

(1)求k, k的值;

(2)如圖,點D在x軸上,在梯形OBCD中,BC∥OD,OB=DC,過點C作CE⊥OD于點E,CE和反比例函數(shù)的圖象交于點P,當(dāng)梯形OBCD的面積為18時,求PE:PC的值.

 

解:(1)∵點A(1,6),B(a,3)在反比例函數(shù)y=的圖象上,

 

∴ k=1×6=6.                   --------1分

∴ a×3=6,a=2.

∴B(2,3).

由點A(1,6),B(2,3)也在直線y=kx+b上,

 

 

解得k=-3.

∴k=-3, k=6.                       -----------------2分

(2) 設(shè)點P的坐標(biāo)為(m,n).

依題意,得  ×3(m+2+m-2)=18,m=6.  -----------------3分

 

∴ C(6,3),E(6,0).

∵ 點P在反比例函數(shù)y=的圖象上,

 

∴ n=1.                               ------------------4分

∴PE :PC=1:2.                     ------------------5分

解析:略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標(biāo);
(3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
(1)求此拋物線的函數(shù)表達式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
2
?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊答案