如圖,拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(﹣1,0),對(duì)稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);

(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).若以AB為一底邊的梯形ABCD的面積為9.

求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);

(3)點(diǎn)P是(2)中拋物線對(duì)稱軸上一動(dòng)點(diǎn),且以1個(gè)單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.

①當(dāng)t為    秒時(shí),△PAD的周長(zhǎng)最小?當(dāng)t為      秒時(shí),△PAD是以AD為腰的等腰三角形?(結(jié)果保留根號(hào))

②點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在一點(diǎn)P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

(1) B(﹣3,0);

(2)y=x2+4x+3化為頂點(diǎn)式為y=(x+2)2﹣1,得E(﹣2,﹣1);

(3)①2;4或4﹣或4+;  ②存在一點(diǎn)P,使△PAD是以AD為斜邊的直角三角形, P(﹣2,1)或(﹣2,2).

【解析】

試題分析:(1)根據(jù)拋物線的軸對(duì)稱性可得拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);

(2)先根據(jù)梯形ABCD的面積為9,可求c的值,再運(yùn)用待定系數(shù)法可求拋物線的解析式,轉(zhuǎn)化為頂點(diǎn)式可求頂點(diǎn)E的坐標(biāo);

(3)①根據(jù)軸對(duì)稱﹣?zhàn)疃搪肪問(wèn)題的求法可得△PAD的周長(zhǎng)最小時(shí)t的值;根據(jù)等腰三角形的性質(zhì)可分三種情況求得△PAD是以AD為腰的等腰三角形時(shí)t的值;

②先證明△APN∽△PDM,根據(jù)相似三角形的性質(zhì)求得PN的值,從而得到點(diǎn)P的坐標(biāo).

試題解析:(1)由拋物線的軸對(duì)稱性及A(﹣1,0),可得B(﹣3,0);

(2)設(shè)拋物線的對(duì)稱軸交CD于點(diǎn)M,交AB于點(diǎn)N,

由題意可知AB∥CD,由拋物線的軸對(duì)稱性可得CD=2DM.

∵M(jìn)N∥y軸,AB∥CD,

∴四邊形ODMN是矩形.

∴DM=ON=2,

∴CD=2×2=4.

∵A(﹣1,0),B(﹣3,0),

∴AB=2,

∵梯形ABCD的面積=(AB+CD)•OD=9,

∴OD=3,即c=3.

∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,

解得

∴y=x2+4x+3.

將y=x2+4x+3化為頂點(diǎn)式為y=(x+2)2﹣1,得E(﹣2,﹣1);

(3)①當(dāng)t為2秒時(shí),△PAD的周長(zhǎng)最;當(dāng)t為4或4﹣或4+秒時(shí),△PAD是以AD為腰的等腰三角形.

故答案為:2;4或4﹣或4+

②存在.

∵∠APD=90°,∠PMD=∠PNA=90°,

∴∠DPM+∠APN=90°,∠DPM+∠PDM=90°,

∴∠PDM=∠APN,

∵∠PMD=∠ANP,

∴△APN∽△PDM,

,

,

∴PN2﹣3PN+2=0,

∴PN=1或PN=2.

∴P(﹣2,1)或(﹣2,2).

考點(diǎn):二次函數(shù)綜合題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖拋物線y=ax2+ax+c(a≠0)與x軸的交點(diǎn)為A、B(A在B的左邊)且AB=3,與y軸交于C,若拋物線過(guò)點(diǎn)E(-1,2).
(1)求拋物線的解析式;
(2)在x軸的下方是否存在一點(diǎn)P使得△PBC的面積為3?若存在求出P點(diǎn)的坐標(biāo),不存在說(shuō)明理由;
(3)若D為原點(diǎn)關(guān)于A點(diǎn)的對(duì)稱點(diǎn),F(xiàn)點(diǎn)坐標(biāo)為(0,1.5),將△CEF繞點(diǎn)C旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,線段DE與BF是否存在某種關(guān)系(數(shù)量、位置)?請(qǐng)指出并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖拋物線y=ax2+ax+c(a≠0)與x軸的交點(diǎn)為A、B(A在B的左邊)且AB=3,與y軸交于C,若拋物線過(guò)點(diǎn)E(-1,2).
(1)求拋物線的解析式;
(2)在x軸的下方是否存在一點(diǎn)P使得△PBC的面積為3?若存在求出P點(diǎn)的坐標(biāo),不存在說(shuō)明理由;
(3)若D為原點(diǎn)關(guān)于A點(diǎn)的對(duì)稱點(diǎn),F(xiàn)點(diǎn)坐標(biāo)為(0,1.5),將△CEF繞點(diǎn)C旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,線段DE與BF是否存在某種關(guān)系(數(shù)量、位置)?請(qǐng)指出并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖南省岳陽(yáng)市四中高一新生入學(xué)考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖拋物線y=ax2+ax+c(a≠0)與x軸的交點(diǎn)為A、B(A在B的左邊)且AB=3,與y軸交于C,若拋物線過(guò)點(diǎn)E(-1,2).
(1)求拋物線的解析式;
(2)在x軸的下方是否存在一點(diǎn)P使得△PBC的面積為3?若存在求出P點(diǎn)的坐標(biāo),不存在說(shuō)明理由;
(3)若D為原點(diǎn)關(guān)于A點(diǎn)的對(duì)稱點(diǎn),F(xiàn)點(diǎn)坐標(biāo)為(0,1.5),將△CEF繞點(diǎn)C旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,線段DE與BF是否存在某種關(guān)系(數(shù)量、位置)?請(qǐng)指出并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年北京市解密預(yù)測(cè)中考模擬試卷06(解析版) 題型:解答題

如圖拋物線y=ax2+ax+c(a≠0)與x軸的交點(diǎn)為A、B(A在B的左邊)且AB=3,與y軸交于C,若拋物線過(guò)點(diǎn)E(-1,2).
(1)求拋物線的解析式;
(2)在x軸的下方是否存在一點(diǎn)P使得△PBC的面積為3?若存在求出P點(diǎn)的坐標(biāo),不存在說(shuō)明理由;
(3)若D為原點(diǎn)關(guān)于A點(diǎn)的對(duì)稱點(diǎn),F(xiàn)點(diǎn)坐標(biāo)為(0,1.5),將△CEF繞點(diǎn)C旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,線段DE與BF是否存在某種關(guān)系(數(shù)量、位置)?請(qǐng)指出并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市中考數(shù)學(xué)模擬試卷(2)(解析版) 題型:解答題

如圖拋物線y=ax2+ax+c(a≠0)與x軸的交點(diǎn)為A、B(A在B的左邊)且AB=3,與y軸交于C,若拋物線過(guò)點(diǎn)E(-1,2).
(1)求拋物線的解析式;
(2)在x軸的下方是否存在一點(diǎn)P使得△PBC的面積為3?若存在求出P點(diǎn)的坐標(biāo),不存在說(shuō)明理由;
(3)若D為原點(diǎn)關(guān)于A點(diǎn)的對(duì)稱點(diǎn),F(xiàn)點(diǎn)坐標(biāo)為(0,1.5),將△CEF繞點(diǎn)C旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,線段DE與BF是否存在某種關(guān)系(數(shù)量、位置)?請(qǐng)指出并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案