(1)證明:∵∠A=2∠B,且∠A=60°,
∴∠B=30°,
∴∠C=180°-∠A-∠B=90°,
∴a
2+b
2=c
2,c=2b,
∴a
2=c
2-b
2=(2b)
2-b
2=3b
2=b
2+2b
2=b
2+bc=b(b+c).
(2)關(guān)系式a
2=b(b+c)仍然成立.
證明:如圖,延長BA至點D,使AD=AC=b,連接CD.
則△ACD為等腰三角形,
∴∠ACD=∠D,
∵∠BAC為△ACD的一個外角,
∴∠BAC=∠D+∠ACD=2∠D,
∵∠BAC=2∠B,
∴∠B=∠D,
∴CD=BC=a,∠B=∠ACD,
∴BD=AB+AD=b+c,
又∵∠D為△ACD與△CBD的一個公共角,
∴△ACD∽△CBD.…
∴
,即
,
∴a
2=b(b+c).
(3)若△ABC是倍角三角形,由∠A=2∠B,應(yīng)有a
2=b(b+c),且a>b.
當a>c>b時,設(shè)a=n+1,c=n,b=n-1,(n為大于1的正整數(shù))
代入a
2=b(b+c),得(n+1)
2=(n-1)•(2n-1),
解得:n=5,
∴a=6,b=4,c=5,可以證明這個三角形中,∠A=2∠B;
當c>a>b或a>b>c時,
均不存在三條邊長恰為三個連續(xù)正整數(shù)的倍角三角形.
∴邊長為4,5,6的三角形為所求.
分析:(1)由∠A=2∠B,且∠A=60°,可求得∠C=90°,由勾股定理與c=2b,即可證得:a
2=b(b+c);
(2)首先延長BA至點D,使AD=AC=b,連接CD,易證得△ACD與△BCD是等腰三角形,AC=AD=b,BC=CD=a,BD=b+c,又由△ACD∽△CBD,利用相似三角形的對應(yīng)邊成比例,即可求得答案;
(3)由題意得:若△ABC是倍角三角形,由∠A=2∠B,應(yīng)有a
2=b(b+c),且a>b;然后分別從a>c>b,c>a>b,a>b>c去分析,即可求得符合要求的值.
點評:此題考查了相似三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、勾股定理、一元二次方程的求解方法以及三角形的三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.