如圖,Rt△ABO的頂點(diǎn)A是雙曲線數(shù)學(xué)公式與直線y=-x-(k+1)在第二象限的交點(diǎn),AB⊥x軸于B且S△ABO=數(shù)學(xué)公式
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A,C的坐標(biāo)和△AOC的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

解:(1)設(shè)A點(diǎn)坐標(biāo)為(x,y)且x<0,y>0,
則S△AB0=|BO||BA|=(-x)y=
∴xy=-3,
又∵y=,xy=k,
∴k=-3,
∴所求的兩個(gè)函數(shù)的解析式分別為y=-,y=-x+2;

(2)由y=-x+2,令y=0得x=2.
直線y=-x+2與x軸的交點(diǎn)D的坐標(biāo)為(2,0).
,解得,
∴A(-1,3),C(3,-1),
∴S△AOC=S△AOD+S△ODC=4,

(3)∵A(-1,3),C(3,-1),
∴當(dāng)x>3或-1<x<0時(shí)
∴當(dāng)-1<x<0或x>3時(shí),一次函數(shù)的值小于反比例函數(shù)的值.
分析:(1)根據(jù)反比例函數(shù)的性質(zhì),利用S△ABO=,即可得出xy=-3,進(jìn)而求出一次函數(shù)解析式即可;
(2)將兩函數(shù)解析式聯(lián)立求出交點(diǎn)坐標(biāo)即可,根據(jù)A,C兩點(diǎn)坐標(biāo)即可得出△AOC的面積;
(3)利用函數(shù)圖象的交點(diǎn)坐標(biāo)即可得出一次函數(shù)的值小于反比例函數(shù)的值時(shí)自變量x的取值范圍.
點(diǎn)評(píng):本題考查的是反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,熟知反比例函數(shù)中k=xy是定值這一知識(shí)點(diǎn)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=
2
3
x2
+bx+c經(jīng)過(guò)B點(diǎn),且頂點(diǎn)在直線x=
5
2
上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由;
(3)在(2)的前提下,若M點(diǎn)是CD所在直線下方該拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MN平行于y軸交CD于點(diǎn)N.設(shè)點(diǎn)M的橫坐標(biāo)為t,MN的長(zhǎng)度為l.求l與t之間的函數(shù)關(guān)系式,并求l取最大值時(shí),點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABO的頂點(diǎn)A是反比例函數(shù)y=
k
x
與一次函數(shù)y=-x+(k+1)的圖精英家教網(wǎng)象在第四象限的交點(diǎn),AB⊥x軸于B,且S△ABO=
5
2

(1)求這個(gè)反比例函數(shù)和一次函數(shù)的解析式;
(2)求這個(gè)一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=
2
3
x2+bx+c經(jīng)過(guò)B點(diǎn),且頂點(diǎn)在直線x=
5
2
上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABO的頂點(diǎn)A是反比例函數(shù)y=
k
x
與一次函數(shù)y=-x-(k+1)的圖象在第二象限的交點(diǎn).AB⊥x軸于B,且S△ABO=
3
2

(1)求這兩個(gè)函數(shù)的解析式;
(2)求兩個(gè)函數(shù)圖象的兩個(gè)交點(diǎn)A,C的坐標(biāo)和△AOC的面積;
(3)利用圖象判斷,當(dāng)x為何值時(shí),反比例函數(shù)的值小于一次函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABO的頂點(diǎn)A是雙曲線y=
k
x
與直線y=-x+(k+1)在第四象限的交點(diǎn),AB⊥x軸于B,且S△AOB=
3
2
,求這兩個(gè)函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案