(2010•濱州)如圖,?ABCD中,∠ABC=60°,E、F分別在CD、BC的延長線上,AE∥BD,EF⊥BC,DF=2,則EF的長為   
【答案】分析:由平行四邊形的性質(zhì)及直角三角形的性質(zhì),推出△CDF為等邊三角形,再根據(jù)勾股定理解答即可.
解答:解:∵在平行四邊形ABCD中,AB∥CD,∠ABC=60°,
∴∠DCF=60°,
又∵EF⊥BC,
∴∠CEF=30°,
∴CF=CE,
又∵AE∥BD,
∴AB=CD=DE,
∴CF=CD,
又∵∠DCF=60°,
∴∠CDF=∠DFC=60°,
∴CD=CF=DF=DE=2,
∴在Rt△CEF中,由勾股定理得:EF====
故答案為2
點評:本題考查平行四邊形的性質(zhì)的運用.解題關(guān)鍵是利用平行四邊形的性質(zhì)結(jié)合三角形性質(zhì)來解決有關(guān)的計算和證明.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2010•濱州)如圖,四邊形ABCD是菱形,點D的坐標是(0,),以點C為頂點的拋物線y=ax2+bx+c恰好經(jīng)過x軸上A、B兩點.
(1)求A、B、C三點的坐標;
(2)求過A、B、C三點的拋物線的解析式;
(3)若將上述拋物線沿其對稱軸向上平移后恰好過D點,求平移后拋物線的解析式,并指出平移了多少個單位.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省濱州市中考數(shù)學試卷(解析版) 題型:解答題

(2010•濱州)如圖,四邊形ABCD是菱形,點D的坐標是(0,),以點C為頂點的拋物線y=ax2+bx+c恰好經(jīng)過x軸上A、B兩點.
(1)求A、B、C三點的坐標;
(2)求過A、B、C三點的拋物線的解析式;
(3)若將上述拋物線沿其對稱軸向上平移后恰好過D點,求平移后拋物線的解析式,并指出平移了多少個單位.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的對稱》(02)(解析版) 題型:選擇題

(2010•濱州)如圖,把一個長方形紙片對折兩次,然后沿圖中虛線剪下一個角,為了得到一個正方形,剪切線與折痕所成的角的大小等于( )

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2010•濱州)如圖,已知AB是⊙O的直徑,點C在⊙O上,且AB=13,BC=5.
(1)求sin∠BAC的值;
(2)如果OD⊥AC,垂足為D,求AD的長;
(3)求圖中陰影部分的面積.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(13)(解析版) 題型:解答題

(2010•濱州)如圖,已知AB是⊙O的直徑,點C在⊙O上,且AB=13,BC=5.
(1)求sin∠BAC的值;
(2)如果OD⊥AC,垂足為D,求AD的長;
(3)求圖中陰影部分的面積.(精確到0.1)

查看答案和解析>>

同步練習冊答案