【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接AD、BD,則下列結論:①AD=BC;②BD、AC互相平分;四邊形ACED是菱形.其中正確的個數(shù)是

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】

由已知和平移的性質,△ABC、△DCE都是是等邊三角形,

∴∠ACB=∠DCE=600,AC=CD。

∴∠ACD=1800∠ACB∠DCE=600。

∴△ACD是等邊三角形。

∴AD=AC=BC。故正確;

可得AD=BC,

∵AB=CD,四邊形ABCD是平行四邊形。

∴BD、AC互相平分,故正確。

可得AD=AC=CE=DE,故四邊形ACED是菱形,即正確。

綜上可得①②③正確,共3個。故選D。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個小方格都是邊長為1的正方形,

1)求四邊形ABCD的面積;

2)求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線C1

(1) ① 無論m取何值,拋物線經過定點P

隨著m的取值的變化,頂點M(x,y)隨之變化,yx的函數(shù),則點M滿足的函數(shù)C2的關系式為__________________

(2) 如圖1,拋物線C1x軸僅有一個公共點,請在圖1畫出頂點M滿足的函數(shù)C2的大致圖象,平行于y軸的直線l分別交C1、C2于點AB.若△PAB為等腰直角三角形,判斷直線l滿足的條件,并說明理由

(3) 如圖2,二次函數(shù)的圖象C1的頂點M在第二象限、交x軸于另一點C,拋物線上點M與點P之間一點D的橫坐標為-2,連接PD、CD、CM、DM.若SPCDSMCD,求二次函數(shù)的解析式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上有三個點A、BC,表示的數(shù)分別是-4、-2、3,請回答:

(1)C、B兩點的距離與AB兩點距離相等,則需將點C向左移動________個單位;

(2)若移動AB、C三點中的兩點,使三個點表示的數(shù)相同,移動方法有________種,其中移動所走的距離之和最小的是________個單位;

(3)若在B處有一小青蛙,一步跳一個單位長,小青蛙第一次先向左跳一步,第2次向右跳3步,第3次向再向左跳5步,第4次再向右跳7……,按此規(guī)律繼續(xù)下去,那么跳第100次時落腳點表示的數(shù)是________;

(4)若有兩只小青蛙MN,它們在數(shù)軸上的點表示的數(shù)分別為整數(shù)xy,且|x2|+|y+3|=2,求兩只青蛙M、N之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知直線y=x+3x軸交于點A,與y軸交于點B,將直線在x軸下方的部分沿x軸翻折,得到一個新函數(shù)的圖象(圖中的“V形折線).

1)類比研究函數(shù)圖象的方法,請列舉新函數(shù)的兩條性質,并求新函數(shù)的解析式;

2)如圖2,雙曲線y=與新函數(shù)的圖象交于點C1a),點D是線段AC上一動點(不包括端點),過點Dx軸的平行線,與新函數(shù)圖象交于另一點E,與雙曲線交于點P

試求△PAD的面積的最大值;

探索:在點D運動的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時點D的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:b是最小的正整數(shù),且a、b滿足0,請回答問題:

1)請直接寫出a、bc的值;

2)數(shù)軸上ab、c所對應的點分別為A、B、C,點MA、B之間的一個動點,其對應的數(shù)為m,請化簡(請寫出化簡過程);

3)在(1)(2)的條件下,點A、B、C開始在數(shù)軸上運動.若點A以每秒1個單位長度的速度向左運動.同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動.假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BCAB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB3,BC10,∠A45°,點E是邊AD上一動點,將△AEB沿直線BE折疊,得到△FEB,設BFAD交于點M,當BFABCD的一邊垂直時,DM的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)填入相應集合內:﹣2,4,1.1010010001,π,0.3%,,﹣|3|,(﹣12012

整數(shù)集合:[_____…];

分數(shù)集合:[_____…]

無理數(shù)集合:[_____…];

正數(shù)集合:[_____…]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周日上午小明從家跑步去圖書館,在那里看了一會兒書后又走到文具店去買筆記本,然后散步回家.下圖反映的是小明離家的距離 與所用時間之間的函數(shù)關系,據此回答問題:

(1)圖書館離小明家 ,小明從家到圖書館用了

(2)圖書館離文具店____

(3)小明在文具店停留了

(4)小明從文具店回到家的平均速度是多少千米/小時?(寫出簡要計算過程)

查看答案和解析>>

同步練習冊答案