【題目】如圖1,等腰中,,為中點(diǎn),連接,
(1)求證:是等邊三角形
(2)如圖2,在內(nèi)有一點(diǎn),連接、、,若,求的度數(shù)
(3)如圖3,在(2)的條件下,在外有一點(diǎn),連接、、若,,,求線段的長(zhǎng).
【答案】(1)證明見解析,(2)150°;(3)6.
【解析】
(1)構(gòu)造△CDE≌△BDA,可得∠E=∠CAD=∠BAD, AC=EC,故AB=EC=AC=BC,即可解答.
(2)以AD為邊作等邊△ADE,連接EC,易證△ABD≌ACE,EC=BD,由已知可得Rt△EDC,從而∠ADC=60°+90°=150°;
(3)作2倍角的平分線構(gòu)造全等三角形,Rt△AGC≌Rt△AHC≌Rt△AHF;由∠ADC=150°可得∠CDG=30°,可知CG=CH=HF=CD,從而得到△CEF為等腰三角形,由△CFE∽△ACF可得,即可計(jì)算AF長(zhǎng),由AF=AC=AB即可解答.
(1)證明:延長(zhǎng)AD到E,使DE=AD,
在△CDE和△ABD中
∴△CDE≌△BDA(SAS)
∴∠E=∠BAD,AB=CE,
∵AB=BC,
∴∠BAC=∠C,
又∵,∠BAC=∠BAD+CAD,
∴∠E=∠CAD,
∴AC=CE,
∴AC=AB=BC,即是等邊三角形
(2)以AD為邊作等邊△ADE,連接EC,
∵∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△AEC中,
∴△ABD≌△ACE(SAS)
∴EC=BD,
在等邊三角形ADE中,AD=DE,∠ADE=60°,
∵,
∴,
∴∠EDC=90°,
∴∠ADC=∠ADE+∠EDC=60°+90°=150°
(3)作∠CAE平分線AH,過(guò)C點(diǎn)作CG⊥AD交AD延長(zhǎng)線于G點(diǎn),作CH⊥AH交AH于H點(diǎn),交AE延長(zhǎng)線與F點(diǎn),
由(2)得,∠ADC=150°,
∴∠CDG=30°,
∴CG=CD,
∵∠CAE=2∠CAD,
∴∠CAG=∠CAH,
又∵CG⊥AD, CH⊥AH,易證△AGC≌△AHC≌△AHF;
∴GC=HC=HF,∠ACF=∠F,AB=AF,
∵CD=CE,CF=2CG=CD,
∴CE=CF,
∴∠CEF=∠EFC,
又∵∠F=∠F,
∴△CFE∽△ACF
∴,
∵AE=4,CE=CF=2,AF=4+EF
∴EF=2,
∴AB=AC=AF=4+2=6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是∠ACB的平分線,∠EDC=25,∠DCE=25,∠B=70.
(1)試證明:DE∥BC;
(2)求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(m+1)x2﹣(m+3)x+2=0.
(1)證明:不論m為何值時(shí),方程總有實(shí)數(shù)根;
(2)m為何整數(shù)時(shí),方程有兩個(gè)不相等的正整數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從地面上的點(diǎn)A看一山坡上的電線桿PQ,測(cè)得桿頂端點(diǎn)P的仰角是45°,向前走9m到達(dá)B點(diǎn),測(cè)得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°.
(1)求∠BPQ的度數(shù);
(2)求該電線桿PQ的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以 為圓心的⊙P經(jīng)過(guò)(-2, 0)以1個(gè)單位/秒的速度沿 軸向右運(yùn)動(dòng),則當(dāng) 與 軸相交的弦長(zhǎng)為4時(shí),則移動(dòng)的時(shí)間為( )
A.2秒
B.3秒
C.2秒或4秒
D.3秒或6秒[來(lái)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線OA的方向是北偏東15°,射線OB的方向是北偏西40°,∠AOB=∠AOC,射線OD是OB的反向延長(zhǎng)線.
(1)射線OC的方向是 ;
(2)若射線OE平分∠COD,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P為AB上任意一點(diǎn),PF⊥AC于F,PE⊥BC于E,則EF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在扇形鐵皮AOB中,OA=20,AOB=36°,OB在直線 上.將此扇形沿l按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)過(guò)程中無(wú)滑動(dòng)),當(dāng)OA第一次落在l上時(shí),停止旋轉(zhuǎn).則點(diǎn)O所經(jīng)過(guò)的路線長(zhǎng)為
( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com