【題目】如圖,在矩形中,,點(diǎn)是邊的中點(diǎn),和的延長(zhǎng)線交于點(diǎn),點(diǎn)是邊上的一點(diǎn),且滿(mǎn)足,連接,,且與交于點(diǎn).
(1)若,求的面積
(2)當(dāng)是直角三角形時(shí),求所有滿(mǎn)足要求的值.
(3)記,,
①求關(guān)于的函數(shù)關(guān)系.
②當(dāng)時(shí),求的值.
【答案】(1);(2)或;(3)①;②
【解析】
(1)當(dāng)a=1時(shí),CG=1,BC=3,GC=2,先由矩形的性質(zhì)及已知證得,求出CF=AD=BC=3,再證得得,然后由等高的面積比等于相似比求得的面積;
(2)分兩種情況:①,②,利用相似三角形的判定與性質(zhì)求解即可;
(3)①由和可證得,根據(jù)同底的三角形面積比等于相似比即可求解關(guān)于的函數(shù)關(guān)系;
②由已知證得,得到,過(guò)O作OH⊥AD于H,由勾股定理得關(guān)于a的方程,解之得到AD,即可求得.
(1)當(dāng)a=1時(shí),CG=1,BC=3,GC=2,
矩形中,,
,AD=BC=3,
又,
,
,
∴CF=AD=3,
,
∵,
∴,
,
∵ΔAOG底邊OG上的高與ΔAGD底邊GD的高相等,
(2)
分兩種情形討論
情形①:如圖1,,
∵
∴,又AB=8,
,
易證,
,
,,
易證,
∴
情形②:如圖2,,
∵∠AGB+∠BAG=90,∠AGB+∠DGC=90,
∴∠BAG=∠DGC,
(3)①∵,
∴,
又
∴AE=EF,
又
,
②,
,即,
過(guò)O作OH⊥AD于H,則有
,
,
∴AD=BC=12,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一座橫跨沙穎河的斜拉橋,拉索兩端分別固定在主梁l和索塔h上,索塔h垂直于主梁l,垂足為D.拉索AE,BF,CG的仰角分別是α,45°,β,且α+β=90°(α<β),AB=15m,BC=5m,CD=4m,EF=3FG,求拉索AE的長(zhǎng).(精確到1m,參考數(shù)據(jù):≈2.24,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,BC的延長(zhǎng)線與⊙O的切線AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE,AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,第一象限內(nèi)的點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C在y軸上,BC∥x軸,點(diǎn)A的坐標(biāo)為(2,4),且tan∠ACB=
求:(1)反比例函數(shù)的解析式;
(2)點(diǎn)C的坐標(biāo);
(3)∠ABC的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小玲和弟弟小東分別從家和圖書(shū)館同時(shí)出發(fā),沿同一條路相向而行,小玲開(kāi)始跑步中途改為步行,到達(dá)圖書(shū)館恰好用30min.小東騎自行車(chē)以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開(kāi)出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖所示
(1)家與圖書(shū)館之間的路程為多少m,小玲步行的速度為多少m/min;
(2)求小東離家的路程y關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量的取值范圍;
(3)求兩人相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD中,∠B=60°,AB=12,BC=5,P為AB上任意一點(diǎn)(可以與A、B重合),延長(zhǎng)PD到F,使得DF=PD,以PF、PC為邊作平行四邊形PCEF,則PE長(zhǎng)度的最小值____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線L1:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0),OB=OC=3OA.若拋物線L2與拋物線L1關(guān)于直線x=2對(duì)稱(chēng).
(1)求拋物線L1與拋物線L2的解析式;
(2)在拋物線L1上是否存在一點(diǎn)P,在拋物線L2上是否存在一點(diǎn)Q,使得以BC為邊,且以B、C、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與 x 軸交于點(diǎn) C,與 y 軸交于點(diǎn) B,拋物線 經(jīng)過(guò) B、C 兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖,點(diǎn) E 是拋物線上的一動(dòng)點(diǎn)(不與 B,C 兩點(diǎn)重合),△BEC 面積記為 S,當(dāng) S 取何值時(shí),對(duì)應(yīng)的點(diǎn) E 有且只有三個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是⊙O的切線,點(diǎn)C在直徑AB的延長(zhǎng)線上.
(1)求證:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com