兩拋物線y=x2+2ax+b2和y=x2+2cx-b2與x軸交于同一點(非原點),且a、b、c是正數(shù),a≠c,試判斷以a、b、c為邊的三角形的形狀.
分析:求出x2+2ax+b2=0的兩個根x1,x2;再求出方程x2+2cx-b2=0的兩根x3,x4;分四種情況進行計算即可作出判斷:①x1=x3,②x2=x4,③x1=x4,④x2=x3
解答:解:解方程x2+2ax+b2=0得,
x1=
-2a+
(2a)2-4b2
2
=-a+
a2-b2

x2=
-2a-
(2a)2-4b2
2
=-a-
a2-b2
,
解方程x2+2cx-b2=0得,
x3=
-2c+
(2c)2+4b2
2
=-c+
c2+b2
,
x4=
-2c-
(2c)2+4b2
2
=-c-
c2+b2

∵兩拋物線y=x2+2ax+b2和y=x2+2cx-b2與x軸交于同一點,
∴方程x2+2ax+b2=0和x2+2cx-b2=0有一個相同的根,
∴①x1=x3,-a+
a2-b2
=-c+
c2+b2
;
移項得,c-a=
c2+b2
-
a2-b2

∵a≠c,
兩邊平方得,c2+a2-2ac=c2+b2+a2-b2-2
c2+b2
a2-b2
,
整理得,ac=
c2+b2
a2-b2
,
兩邊平方得,a2c2=(c2-b2)(a2-b2),
整理得,c2+b2=a2
根據(jù)勾股定理的逆定理,可知此三角形為直角三角形.
同理,②x2=x4時,得相同結果;
③x1=x4時,解得,等式不成立;
④x2=x3時,解得,等式不成立.
故三角形為直角三角形.
點評:此題考查了拋物線與x軸的交點與二次函數(shù)與一元二次方程的關系,求出方程的解,列出等式,是解題的關鍵.解答時要注意分類討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

兩拋物線y=x2+2ax+b2和y=x2+2cx-b2與x軸交于同一點(非原點),且a、b、c為正數(shù),a≠c,則以a、b、c為邊的三角形一定是(  )
A、等腰直角三角形B、直角三角形C、等腰三角形D、等腰或直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

兩拋物線y=x2+x+1與y=x2-x+1在同一平面直角坐標系下位置關系(  )

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學競賽專項訓練06:函數(shù)(解析版) 題型:選擇題

兩拋物線y=x2+2ax+b2和y=x2+2cx-b2與x軸交于同一點(非原點),且a、b、c為正數(shù),a≠c,則以a、b、c為邊的三角形一定是( )
A.等腰直角三角形
B.直角三角形
C.等腰三角形
D.等腰或直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

兩拋物線y=x2+2ax+b2和y=x2+2cx-b2與x軸交于同一點(非原點),且a、b、c是正數(shù),a≠c,試判斷以a、b、c為邊的三角形的形狀.

查看答案和解析>>

同步練習冊答案