【題目】在直角坐標(biāo)系xoy中,已知點(diǎn)P(0, ),曲線(xiàn)C的參數(shù)方程為 (φ為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρ= . (Ⅰ)判斷點(diǎn)P與直線(xiàn)l的位置關(guān)系并說(shuō)明理由;
(Ⅱ)設(shè)直線(xiàn)l與曲線(xiàn)C的兩個(gè)交點(diǎn)分別為A,B,求 + 的值.
【答案】解:(Ⅰ)點(diǎn)P在直線(xiàn)l上,理由如下: 直線(xiàn)l:ρ= ,即 = ,亦即 = ,
∴直線(xiàn)l的直角坐標(biāo)方程為: x+y= ,易知點(diǎn)P在直線(xiàn)l上.
(Ⅱ)由題意,可得直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),曲線(xiàn)C的普通方程為 =1.
將直線(xiàn)l的參數(shù)方程代入曲線(xiàn)C的普通方程,得5t2+12t﹣4=0,
設(shè)兩根為t1 , t2 ,
∴t1+t2=﹣ ,t1t2=﹣ ,
∴|PA|+|PB|=|t1﹣t2|= = ,
∴ + = = = .
【解析】(Ⅰ)點(diǎn)P在直線(xiàn)l上,理由如下:直線(xiàn)l:ρ= ,展開(kāi)可得 = ,可得直線(xiàn)l的直角坐標(biāo)方程即可驗(yàn)證.(Ⅱ)由題意,可得直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),曲線(xiàn)C的普通方程為 =1.將直線(xiàn)l的參數(shù)方程代入曲線(xiàn)C的普通方程,得5t2+12t﹣4=0,可得|PA|+|PB|=|t1﹣t2|= ,即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間 ( )上的值域?yàn)閇﹣1,2],則θ等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,an>0,且4Sn=an(an+2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,Tn=b1+b2+…+bn , 求證:Tn< .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線(xiàn)下分店,計(jì)劃在S市的A區(qū)開(kāi)設(shè)分店.為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù),y表示這x個(gè)分店的年收入之和.
x(個(gè)) | 2 | 3 | 4 | 5 | 6 |
y(百萬(wàn)元) | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)該公司已經(jīng)過(guò)初步判斷,可用線(xiàn)性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線(xiàn)性回歸方程y= ;
(Ⅱ)假設(shè)該公司在A區(qū)獲得的總年利潤(rùn)z(單位:百萬(wàn)元)與x,y之間的關(guān)系為z=y﹣0.05x2﹣1.4,請(qǐng)結(jié)合(Ⅰ)中的線(xiàn)性回歸方程,估算該公司應(yīng)在A區(qū)開(kāi)設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤(rùn)最大?
參考公式: = x+a, = = ,a= ﹣ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x2﹣3)ex , 設(shè)關(guān)于x的方程 有n個(gè)不同的實(shí)數(shù)解,則n的所有可能的值為( )
A.3
B.1或3
C.4或6
D.3或4或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出四種說(shuō)法: ①用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小,說(shuō)明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(﹣1<X<0)= ﹣p
④回歸直線(xiàn)一定過(guò)樣本點(diǎn)的中心( , ).
其中正確的說(shuō)法有(請(qǐng)將你認(rèn)為正確的說(shuō)法的序號(hào)全部填寫(xiě)在橫線(xiàn)上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣(2a﹣1)x﹣lnx(a為常數(shù),a≠0). (Ⅰ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(Ⅱ)記函數(shù)f(x)圖象為曲線(xiàn)C,設(shè)點(diǎn)A(x1 , y1),B(x2 , y2)是曲線(xiàn)C上不同的兩點(diǎn),點(diǎn)M為線(xiàn)段AB的中點(diǎn),過(guò)點(diǎn)M作x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)N.判斷曲線(xiàn)C在點(diǎn)N處的切線(xiàn)是否平行于直線(xiàn)AB?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B為拋物線(xiàn)E:y2=2px(p>0)上異于頂點(diǎn)O的兩點(diǎn),△AOB是等邊三角形,其面積為48 ,則p的值為( )
A.2
B.2
C.4
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,點(diǎn)O為△ABD的外心,點(diǎn)C為直徑BD下方弧BCD上一點(diǎn),且不與點(diǎn)B,D重合,∠ACB=∠ABD=45°,則下列對(duì)AC,BC,CD之間的數(shù)量關(guān)系判斷正確的是( )
A.AC=BC+CD
B. AC=BC+CD
C. AC=BC+CD
D.2AC=BC+CD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com