【題目】已知⊙O的直徑AB=2,弦AC與弦BD交于點(diǎn)E.且OD⊥AC,垂足為點(diǎn)F.
(1)如圖1,如果AC=BD,求弦AC的長(zhǎng);
(2)如圖2,如果E為弦BD的中點(diǎn),求∠ABD的余切值;
(3)聯(lián)結(jié)BC、CD、DA,如果BC是⊙O的內(nèi)接正n邊形的一邊,CD是⊙O的內(nèi)接正(n+4)邊形的一邊,求△ACD的面積.
【答案】(1)AC=;(2)cot∠ABD=;(3)S△ACD=.
【解析】(1)由AC=BD知 ,得,根據(jù)OD⊥AC知,從而得,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AOsin∠AOF可得答案;
(2)連接BC,設(shè)OF=t,證OF為△ABC中位線及△DEF≌△BEC得BC=DF=2t,由DF=1﹣t可得t=,即可知BC=DF=,繼而求得EF=AC=,由余切函數(shù)定義可得答案;
(3)先求出BC、CD、AD所對(duì)圓心角度數(shù),從而求得BC=AD=、OF=,從而根據(jù)三角形面積公式計(jì)算可得.
(1)∵OD⊥AC,
∴,∠AFO=90°,
又∵AC=BD,
∴,即,
∴,
∴,
∴∠AOD=∠DOC=∠BOC=60°,
∵AB=2,
∴AO=BO=1,
∴AF=AOsin∠AOF=1×=,
則AC=2AF=;
(2)如圖1,連接BC,
∵AB為直徑,OD⊥AC,
∴∠AFO=∠C=90°,
∴OD∥BC,
∴∠D=∠EBC,
∵DE=BE、∠DEF=∠BEC,
∴△DEF≌△BEC(ASA),
∴BC=DF、EC=EF,
又∵AO=OB,
∴OF是△ABC的中位線,
設(shè)OF=t,則BC=DF=2t,
∵DF=DO﹣OF=1﹣t,
∴1﹣t=2t,
解得:t=,
則DF=BC=、AC==,
∴EF=FC=AC=,
∵OB=OD,
∴∠ABD=∠D,
則cot∠ABD=cot∠D=;
(3)如圖2,
∵BC是⊙O的內(nèi)接正n邊形的一邊,CD是⊙O的內(nèi)接正(n+4)邊形的一邊,
∴∠BOC=、∠AOD=∠COD=,
則+2×=180,
解得:n=4,
∴∠BOC=90°、∠AOD=∠COD=45°,
∴BC=AC=,
∵∠AFO=90°,
∴OF=AOcos∠AOF=,
則DF=OD﹣OF=1﹣,
∴S△ACD=ACDF=××(1﹣)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)正比例函數(shù)與一個(gè)一次函數(shù)的圖象交于點(diǎn)A(3,4),其中一次函數(shù)與y軸交于B點(diǎn),且OA=OB.
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)求△AOB的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線a∥b,且a與b之間的距離為4,點(diǎn)A到直線a的距離為2,點(diǎn)B到直線b的距離為3,AB=.試在直線a上找一點(diǎn)M,在直線b上找一點(diǎn)N,滿足MN⊥a且AM+MN+NB的長(zhǎng)度和最短,則此時(shí)AM+NB=
A.6 B.8 C.10 D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方格紙中每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)連線為邊的多邊形稱為“格點(diǎn)多邊形”.
(1)在圖1中確定格點(diǎn)D,并畫出一個(gè)以A、B、C、D為頂點(diǎn)的四邊形,使其為軸對(duì)稱圖形(一種情況即可);
(2)直接寫出圖2中△FGH的面積是 ;
(3)在圖3中畫一個(gè)格點(diǎn)正方形,使其面積等于17.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解八年級(jí)500名學(xué)生的身體健康情況,從該年級(jí)隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組:A組:37.5~42.5,B組:42.5~47.5,C組:47.5~52.5,D組:52.5~57.5,E組:57.5~62.5,并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下兩個(gè)不完整的統(tǒng)計(jì)圖.
解答下列問(wèn)題:
(1)這次抽樣調(diào)查的樣本容量是 ;在扇形統(tǒng)計(jì)圖中D組的圓心角是 度.
(2)抽取的學(xué)生體重中位數(shù)落在 組;
(3)請(qǐng)你估計(jì)該校八年級(jí)體重超過(guò)52kg的學(xué)生大約有多少名?
(4)取每個(gè)小組的組中值作為本組學(xué)生的平均體重(A組的組中值為),請(qǐng)你估計(jì)該校八年級(jí)500名學(xué)生的平均體重.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有8×8的正方形網(wǎng)格,每個(gè)小正方形邊長(zhǎng)為1,按要求操作并計(jì)算。
(1)在8×8的正方形網(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;
(2)將點(diǎn)向下平移5個(gè)單位,再關(guān)于軸對(duì)稱得到點(diǎn),則點(diǎn)坐標(biāo)為(_______,_________);
(3)畫出三角形,并求其面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函雙y=(m≠0)的陽(yáng)象交于點(diǎn)c(n,3),與x軸、y軸分別交于點(diǎn)A、B,過(guò)點(diǎn)C作CM⊥x軸,垂足為M,若tan∠CAM=,OA=2.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點(diǎn)D是反比例函數(shù)圖象在第三象限部分上的一點(diǎn),且到x軸的距離是3,連接AD、BD,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,A(a,0)、B(0,b),且|a+2|+(b+2a)2=0,點(diǎn)P為x軸上一動(dòng)點(diǎn),連接BP,在第一象限內(nèi)作BC⊥AB且BC=AB
(1) 求點(diǎn)A、B的坐標(biāo)
(2) 如圖1,連接CP.當(dāng)CP⊥BC時(shí),作CD⊥BP于點(diǎn)D,求線段CD的長(zhǎng)度
(3) 如圖2,在第一象限內(nèi)作BQ⊥BP且BQ=BP,連接PQ.設(shè)P(p,0),直接寫出S△PCQ=_____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com