(1)證明:∵BC=2AD,點F為BC的中點,
∴CF=AD.
又∵AD∥BC,
∴四邊形AFCD是平行四邊形,
∴∠DAE=∠C,AF∥DC,
∴∠AFG=∠CGF.
∵DE∥GF,
∴∠AED=∠AFG,
∴∠AED=∠CGF
∴△AED≌△CGF;
(2)解:結(jié)論:四邊形DEFG是菱形.
證明如下:連接DF.
由(1)得AF∥DC,
又∵DE∥GF,
∴四邊形DEFG是平行四邊形.
∵AD∥BC,AD=BF=
BC,
∴四邊形ABFD是平行四邊形,
又∵∠B=90°,
∴四邊形ABFD是矩形,
∴∠DFC=90°,
∵點G是CD的中點,
∴FG=DG=
CD,
∴四邊形DEFG是菱形;
(3)四邊形DEFG的面積=梯形ABCD的面積-S
△ABF-2S
△CFG,
∵梯形ABCD的面積為a,
∴四邊形DEFG的面積為
a;
分析:(1)∵BC=2AD,點F為BC的中點,∴CF=AD.又∵AD∥BC,∴四邊形AFCD是平行四邊形,∴∠DAE=∠C,AF∥DC,∴∠AFG=∠CGF.∵DE∥GF,∴∠AED=∠AFG,∴∠AED=∠CGF即可證明△AED≌△CGF.
(2)結(jié)論:四邊形DEFG是菱形,連接DF.由(1)得AF∥DC,又∵DE∥GF,∴四邊形DEFG是平行四邊形.∵AD∥BC,AD=BF=
BC∴四邊形ABFD是平行四邊形,又∵∠B=90°,∴四邊形ABFD是矩形,∴∠DFC=90°.∵點G是CD的中點,∴FG=DG=
CD即可證明
四邊形DEFG是菱形;
(3)四邊形DEFG的面積=梯形ABCD的面積-△ABF-2△CFG即可求解;
點評:本題考查了梯形及全等三角形的判定,難度較大,關鍵是掌握全等三角形的判定及菱形的判定方法.