【題目】如圖,直線y=x+1x軸,y軸分別交于B,A兩點(diǎn),動(dòng)點(diǎn)P在線段AB上移動(dòng),以P為頂點(diǎn)作OPQ=45°x軸于點(diǎn)Q

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)比較AOPBPQ的大小,說(shuō)明理由.

3)是否存在點(diǎn)P,使得OPQ是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1A01),B1,0);(2AOP=∠BPQ,理由詳見(jiàn)解析;(3)點(diǎn)P坐標(biāo)為(01),()或(1)時(shí),OPQ是等腰三角形.

【解析】

1)根據(jù)直線y=x+1即可求得A、B的坐標(biāo);

2)根據(jù)OA=OB,求得△AOB是等腰直角三角形,得出∠OAB=OBA=45°,根據(jù)三角形外角的性質(zhì)即可得出結(jié)論.

3)假設(shè)存在等腰三角形,分三種情況討論:(。OP=OQ;(ⅱ)QP=QO;(ⅲ)PO=PQ.能求出P點(diǎn)坐標(biāo),則存在點(diǎn)P,否則,不存在.

1)∵直線y=x+1x軸,y軸分別交于A,B兩點(diǎn),令x=0,則y=0+1=1,∴A0,1),令y=0,則0=x+1,解得:x=1,∴B10).

2)∠AOP=BPQ.理由如下:

A0,1),B1,0),∴OA=OB=1,∴∠OAB=OBA=45°.

∵∠OAP+AOP=OPB=OPQ+BPQ,∴45°+AOP=45°+BPQ,∴∠AOP=BPQ

3)△OPQ可以是等腰三角形.理由如下:

如圖,過(guò)P點(diǎn)PEOAOA于點(diǎn)E.分三種情況討論:

(。┤OP=OQ,則∠OPQ=OQP,∴∠POQ=90°,∴點(diǎn)P與點(diǎn)A重合,∴點(diǎn)P坐標(biāo)為(0,1);

(ⅱ)若QP=QO,則∠OPQ=QOP=45°,所以PQQO,可設(shè)Pxx)代入y=x+1x,∴點(diǎn)P坐標(biāo)為();

(ⅲ)若PO=PQ

∵∠OPQ+1=2+3,而∠OPQ=3=45°,∴∠1=2

又∵∠3=4=45°,∴△AOP≌△BPQAAS),PB=OA=1,∴AP1

由勾股定理求得:PE=AE=1,∴EO,∴點(diǎn)P坐標(biāo)為(1).

綜上所述:點(diǎn)P坐標(biāo)為(0,1),()或(1)時(shí),△OPQ是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正在建設(shè)的成都第二繞城高速全長(zhǎng)超過(guò)220公里,串起我市二、三圈層以及周邊的廣漢、簡(jiǎn)陽(yáng)等地,總投資達(dá)290億元,用科學(xué)計(jì)數(shù)法表示290億元應(yīng)為( )

A. 290× B. 290×

C. 2.90× D. 2.90×

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)(x﹣1)2=9

(2)3x2﹣6x=0

(3)x2+2x=5

(4)4x2﹣8x+1=0(用公式法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,延長(zhǎng)AB到點(diǎn)C,使得2BC=3OB,D是⊙O上一點(diǎn),連接AD,CD,過(guò)點(diǎn)ACD的垂線,交CD的延長(zhǎng)線于點(diǎn)F,過(guò)點(diǎn)DDEAC于點(diǎn)E,且DE=DF.

(1)求證:CD是⊙O的切線;

(2)若AB=4.

①求DF的長(zhǎng);

②連接OF,交AD于點(diǎn)M,求DM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,A1P兩點(diǎn)表示的數(shù)分別為1、3,A1A2關(guān)于O對(duì)稱,A2、A3關(guān)于點(diǎn)P對(duì)稱,A3A4關(guān)于點(diǎn)O對(duì)稱,A4、A5關(guān)于點(diǎn)P對(duì)稱依次規(guī)律,則點(diǎn)A15表示的數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)有500名學(xué)生,從中隨機(jī)抽取了一部分學(xué)生,統(tǒng)計(jì)每晚寫作業(yè)的時(shí)間,根據(jù)它們的時(shí)間(單位:分鐘),繪制出如下的統(tǒng)計(jì)圖和圖請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

(1)m=________,n=________;

(2)求統(tǒng)計(jì)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)這500名學(xué)生中,時(shí)間為120分鐘的約有多少學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知:點(diǎn)···,在射線上,點(diǎn),···,在射線上,,···,均為等邊三角形,若的邊長(zhǎng)為________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有長(zhǎng)為24 m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度a10 m)圍成中間隔著一道籬笆的長(zhǎng)方形花圃.

(1)現(xiàn)要圍成面積為45 m2的花圃,則AB的長(zhǎng)是多少米?

(2)現(xiàn)要圍成面積為48 m2的花圃能行嗎?若能行,則AB的長(zhǎng)是多少?若不能行,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】嘉嘉參加機(jī)器人設(shè)計(jì)活動(dòng),需操控機(jī)器人在5×5的棋盤格上從A點(diǎn)行走至B點(diǎn),且每個(gè)小方格皆為正方形,主辦單位規(guī)定了三條行走路徑R1,R2,R2,其行經(jīng)位置如圖與表所示:

路徑

編號(hào)

圖例

行徑位置

第一條路徑

R1

A→C→D→B

第二條路徑

R2

A→E→D→F→B

第三條路徑

R3

A→G→B

已知A,B,C,D,E,F,G七點(diǎn)皆落在格線的交點(diǎn)上,且兩點(diǎn)之間的路徑皆為線段.

(1)分別計(jì)算出三條路徑的長(zhǎng);

(2)最長(zhǎng)的路徑是______ (寫出編號(hào)),最短的路徑是 _______(寫出編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案