20、如圖,已知O是平行四邊形ABCD對角線AC的中點(diǎn),過O的直線EF分別交AB、CD于E、F兩點(diǎn).
(1)求證:四邊形AECF是平行四邊形;
(2)填空:不添加輔助線,則圖中全等的三角形共有
6
對.
分析:(1)在題中通過全等可證三角形CFO和三角形AEO全等,從而OE=OF,再者OA=OC,利用對角線互相平分的四邊形是平行四邊形可證.
(2)平行四邊形的對角線將把四邊形分成四組全等三角形,因此在?AECF中有四對,再加上原?ABCD中兩對,一共有六對.
解答:解:(1)在?ABCD中,AB∥CD,
∴∠EAO=∠FCO,
又OA=OC,∠EOA=∠FOC,
∴△AOE≌△COF,
∴OE=OF,
∴四邊形AECF為平行四邊形.
(2)由(1)知△AOE≌△COF,
∴OE=OF,∠FOA=∠EOC,OA=OC,
∴△AOF≌△COE,
∵FC=EA,AF=CE,AC=AC,
∴△AFC≌△CEA,
∵FC=EA,CE=AF,EF=FE,
∴△AFE≌△CEF,
∵AD=CB,DC=BA,AC=CA,
∴△ADC≌△CBA,
∵AD=CB,∠D=∠B,DF=BE,
∴△ADF≌△CBE.
因此,共6對.
點(diǎn)評:此題主要借助三角形全等考查了平行四邊形的判定,難易程度適中.熟練掌握判定定理是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,已知平行四邊形ABCD中,E是AB邊的中點(diǎn),DE交AC于點(diǎn)F,AC、DE把它分成的四部分的面積分別為S1S2S3S4,下面結(jié)論:
①只有一對相似三角形
②EF:ED=1:2
③S1:S2:S3:S4=1:2:4:5
其中正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(1,0),B(6,0)和C(0,4 )三個(gè)點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)E(m,n)是拋物線上一個(gè)動(dòng)點(diǎn),且位于第四象限,四邊形OEBF是以O(shè)B為對角線的平行四邊形,求四邊形OEBF的面積S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)四邊形OEBF的面積為24時(shí),請判斷四邊形OEBF是否為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線l1∥l2∥l3∥l4∥l5,相鄰兩條平行直線間的距離相等且為1,如果四邊形ABCD的四個(gè)頂點(diǎn)在平行直線上,∠BAD=90°且AB=2AD,DC⊥l4,則四邊形ABCD的面積是
9
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點(diǎn),B是拋物線m上的動(dòng)點(diǎn)(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關(guān)于x軸對稱,以AC為對角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
(1)求證:點(diǎn)D一定在拋物線n上.
(2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);若不能為矩形,請說明理由.
(3)若(2)中過A、B、C、D的圓交y軸于E、F,而P是弧CF上一動(dòng)點(diǎn)(不包括C、F兩點(diǎn)),連接AP交y軸于N,連接EP交x軸于M.當(dāng)P在運(yùn)動(dòng)時(shí),四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是2,如果正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,則正方形邊長的值為
2
5
2
5

查看答案和解析>>

同步練習(xí)冊答案