如圖1,在正方形ABCD中,對角線AC與BD相交于點(diǎn)O,AF平分∠BAC,交BD于點(diǎn)F.
(1)求證:DF=AD;
(2)過點(diǎn)F作FH⊥AB,垂足為點(diǎn)H,求證:FH+
1
2
AC=AD;
(3)如圖2,將∠ADC繞頂點(diǎn)D旋轉(zhuǎn)一定的角度后,DC邊所在的直線與BC邊交于點(diǎn)C1(不與點(diǎn)B重合),DA邊所在的直線與BA邊的延長線交于點(diǎn)A1. A1F1平分∠BA1C1,交BD于點(diǎn)F1,過點(diǎn)F1作F1H1⊥AB,垂足為H1,試猜想F1H1、
1
2
A1C1與AD三者之間的數(shù)量關(guān)系,并證明你的猜想.
精英家教網(wǎng)
分析:(1)根據(jù)正方形的對角線平分每一組對角∠DAC=∠ABD=45°,再根據(jù)角平分線的定義∠CAF=∠BAF,所以∠DAF=∠DFA,根據(jù)等角對等邊的性質(zhì),DF=AD;
(2)根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等FH=FO,又OD=
1
2
BD=
1
2
AC,所以FH+
1
2
AC=DF=AD;
(3)同(1)利用三角形全等證出A1D=DF1,根據(jù)等腰直角三角形A1DC1的直角邊與斜邊的關(guān)系,從而得出
1
2
A1C1=
2
2
DF1,又等腰直角三角形F1H1B中,F(xiàn)1H1=
2
2
F1B,兩式相加即可得到F1H1+
1
2
A1C1=
2
2
DB,而AD=
2
2
BD,所以三者存在F1H1+
1
2
A1C1=AD.
解答:(1)證明:∵正方形ABCD,
∴∠DAC=∠ABD=45°,精英家教網(wǎng)
∵AF平分∠BAC,
∴∠CAF=∠BAF,
而∠DAF=∠DAC+∠FAC,∠DFA=∠ABD+∠BAF,
∴∠DAF=∠DFA,
∴DF=AD;

(2)證明:∵正方形ABCD,
∴FO⊥AC,
1
2
AC=OD,
∵AF平分∠BAC,F(xiàn)H⊥AB,精英家教網(wǎng)
∴FH=FO,
∴FH+
1
2
AC=FO+OD=DF=AD,
即FH+
1
2
AC=AD.

(3)猜想:F1H1+
1
2
A1C1=AD.
理由:∵AD=CD,∠ADC=∠A1DC1,
∴∠A1DA=∠C1DC,
∴△A1AD≌△C1CD,
∴△A1C1D是等腰直角三角形,
∵A1F1平分∠BA1C1,
∴∠BA1F1=∠F1A1C1
而∠DA1F1=45°+∠F1A1C1,∠DF1A1=45°+∠BA1F1,
∴∠DA1F1=∠DF1A1,
∴A1D=DF1
1
2
A1C1=
2
2
A1D=
2
2
DF1,
又∵在等腰直角三角形F1H1B中,F(xiàn)1H1=
2
2
F1B,
∴F1H1+
1
2
A1C1=
2
2
F1B+
2
2
DF1=
2
2
DB=AD.
即F1H1+
1
2
A1C1=AD.
點(diǎn)評:本題主要利用角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),等角對等邊的性質(zhì),等腰直角三角形斜邊等于直角邊的
2
倍的性質(zhì),綜合性較強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、把正方形OFGE紙板按如圖①方式放置在正方形紙板ABCD上,頂點(diǎn)G在對角線AC,并把正方形OFGE繞頂點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角為а.
(1)如圖②,當(dāng)а=90°時(shí),請直接寫出線段DE與BF的數(shù)量關(guān)系和位置關(guān)系;
(2)如圖③,當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請給出證明.若發(fā)生改變,請舉例說明;
(3)如圖④,將圖①、圖③中的兩個(gè)正方形都改為矩形,其他條件不變,設(shè)AB=kAD(k>0),當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請給出證明.若發(fā)生改變,請寫出改變后的新結(jié)論,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)填空:如圖1,在正方形PQRS中,已知點(diǎn)M、N分別在邊QR、RS上,且QM=RN,連接PN、SM相交于點(diǎn)O,則∠POM=
 
度;
(2)如圖2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此為部分條件,精英家教網(wǎng)構(gòu)造一個(gè)與上述命題類似的正確命題并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖1,在正方形ABCD中,若點(diǎn)E是△DBC內(nèi)的一點(diǎn),且DE=DC,BE=CE.
(1)連接AE.說明△ABE≌△DCE的理由;
(2)求∠BDE與∠CDE度數(shù)的比值;
(3)拓展探索:若只將題中的條件“正方形ABCD”換成條件“梯形ABCD中,AD∥BC,AB=DC,2∠DBC=∠DCB”.如圖2,研究∠BDE與∠CDE度數(shù)的比值是否與(2)中的結(jié)論相同,寫出你的研究結(jié)果并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,在正方形ABCD中,對角線AC與BD相交于點(diǎn)E,AF平分∠BAC,交BD于點(diǎn)F.
(1)求證:EF+
1
2
AC=AB;
(2)點(diǎn)C1從點(diǎn)C出發(fā),沿著線段CB向點(diǎn)B運(yùn)動(不與點(diǎn)B重合),同時(shí)點(diǎn)A1從點(diǎn)A出發(fā),沿著BA的延長線運(yùn)動,點(diǎn)C1與A1的運(yùn)動速度相同,當(dāng)動點(diǎn)C1停止運(yùn)動時(shí),另一動點(diǎn)A1也隨之停止運(yùn)動.如圖2,A1F1平分∠BA1C1,交BD于點(diǎn)F1,過點(diǎn)F1作F1E1⊥A1C1,垂足為E1,請猜想E1F1,
1
2
A1C1與AB三者之間的數(shù)量關(guān)系,并證明你的猜想;
(3)在(2)的條件下,當(dāng)A1E1=3,C1E1=2時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課本練習(xí)拓展:
(1)如圖1,在正方形ABCD中,E是BC上的一點(diǎn),△ABE經(jīng)過旋轉(zhuǎn)后得到△ADF,
①旋轉(zhuǎn)中心是點(diǎn)
A
A
;旋轉(zhuǎn)角度最少是
90
90
度.
②愛動腦筋的小兵,在CD邊上取點(diǎn)H使得∠HAE=45°,他發(fā)現(xiàn):HE=BE+HD,他的發(fā)現(xiàn)正確嗎?請你判斷并說明理由.
(2)思維闖關(guān):
如圖2,在直角梯形ABCD中AD∥BC(BC>AD),∠B=90°BC=AB=6,E是 AB上一點(diǎn),且∠DCE=45°,BE=2,則DE的長=
5
5
.(小兵運(yùn)用解答(1)中所積累的經(jīng)驗(yàn)和知識做出了該題)
(3)動手闖過:
①小明有一塊如圖3所示的紙片,其中∠A=∠C=90°,AB=AD.小明請小兵只剪一刀后把它拼成正方形,請你幫助小兵在圖中畫出剪拼得示意圖.
②小兵好朋友小紅現(xiàn)有兩塊同小明一樣的紙片,如圖4,小兵能否在每塊上各剪一刀,然后拼成一個(gè)大的正方形?若能,請你畫出剪法和拼法的示意圖;若不能,簡要說明理由.

查看答案和解析>>

同步練習(xí)冊答案