【題目】一個(gè)三角形的兩邊長(zhǎng)分別為3和6,第三邊的邊長(zhǎng)是方程(x﹣2)(x﹣4)=0的根,則這個(gè)三角形的周長(zhǎng)是( )
A. 11 B. 11或13 C. 13 D. 以上選項(xiàng)都不正確
【答案】C
【解析】
解方程(x﹣2)(x﹣4)=0,得:x=2或x=4,
當(dāng)x=2時(shí),2,3,6不能構(gòu)成三角形,舍去;
當(dāng)x=4時(shí),3,4,6構(gòu)成三角形,周長(zhǎng)為3+4+6=13。
故選C。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)先仔細(xì)閱讀下列要求,然后解答相關(guān)問(wèn)題.
(1)請(qǐng)補(bǔ)全以下求一元二次不等式-2x2-4x≥0的解集的過(guò)程;
①構(gòu)造函數(shù),畫(huà)出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=-2x2-4x;并在平面直角坐標(biāo)系中(如圖)畫(huà)出二次函數(shù)y=-2x2-4x的圖象(只畫(huà)出草圖即可);
②求得界點(diǎn),標(biāo)示所需:當(dāng)y=0時(shí),求得方程-2x2-4x=0的解為 ;不等式-2x2-4x≥0的解集即為函數(shù)值y≥0時(shí)所對(duì)應(yīng)的自變量x的取值范圍;
③借助圖象,寫(xiě)出解集;由所標(biāo)示圖象,可得不等式-2x2-4x≥0的解集為 ;
(2)請(qǐng)你利用(1)中求不等式解集的方法和步驟,①直接寫(xiě)出一元二次不等式x2-6x+3<10的解集為 ;
②直接寫(xiě)出一元二次不等式x2+3x>-1的解集為 .
解:如圖所示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線(xiàn)上,AD平分∠CAE交⊙O于點(diǎn)D,且AE⊥CD,垂足為點(diǎn)E.
(1)求證:直線(xiàn)CE是⊙O的切線(xiàn).
(2)若BC=3,CD=3,求弦AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,然后解答問(wèn)題.
經(jīng)過(guò)正四邊形(即正方形)各頂點(diǎn)的圓叫做這個(gè)正四邊形的外接圓,圓心是正四邊形的對(duì)稱(chēng)中心,這個(gè)正四邊形叫做這個(gè)圓的內(nèi)接正四邊形.
如圖,正方形ABCD內(nèi)接于⊙O,⊙O的面積為S1,正方形ABCD的面積為S2.以圓心O為頂點(diǎn)作∠MON,使∠MON=90°.將∠MON繞點(diǎn)O旋轉(zhuǎn),OM、ON分別與⊙O交于點(diǎn)E、F,分別與正方形ABCD的邊交于點(diǎn)G、H.設(shè)由OE、OF、及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S.
(1)當(dāng)OM經(jīng)過(guò)點(diǎn)A時(shí)(如圖①),則S、S1、S2之間的關(guān)系為: (用含S1、S2的代數(shù)式表示);
(2)當(dāng)OM⊥AB于G時(shí)(如圖②),則(1)中的結(jié)論仍然成立嗎?請(qǐng)說(shuō)明理由;
(3)當(dāng)∠MON旋轉(zhuǎn)到任意位置時(shí)(如圖③),則(1)中的結(jié)論任然成立嗎:請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市今年參加中考的學(xué)生人數(shù)大約為2.08×104人,對(duì)于這個(gè)用科學(xué)記數(shù)表示的近似數(shù),下列說(shuō)法中正確的是( )
A.精確到百分位
B.精確到十分位
C.精確到個(gè)位
D.精確到百位
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大豐區(qū)為打造“綠色城市”,積極投入資金進(jìn)行河道治污與園林綠化兩項(xiàng)工程,已知2014年投資1000萬(wàn)元,預(yù)計(jì)2016年投資1210萬(wàn)元.若這兩年內(nèi)平均每年投資增長(zhǎng)的百分率相同.
(1)求平均每年投資增長(zhǎng)的百分率;
(2)按此增長(zhǎng)率,計(jì)算2017年投資額能否達(dá)到1360萬(wàn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線(xiàn)上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com