【題目】如圖,四邊形ABCD中,∠BAD= 120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)為

【答案】120°
【解析】作A關于BC和CD的對稱點A′,A′′,交BC于M,交CD于N,根據(jù)軸對稱的性質得出A′A′′即為△AMN周長的最小值.
∠BAD= 120°,
∠AAA′′+∠AA′′A=180°-120°=60°,
又∵A、A′關于BC對稱,A、A′′關于CD對稱,
∠MAA=∠MAA,∠NAA′′=∠NA′′A,
又∵∠AMN=∠MAA+∠MAA,∠ANM=∠NAA′′+∠NA′′A,
∠AMN+∠ANM=∠MAA+∠MAA+∠NAA′′+∠NA′′A,
=2(∠MAA+∠NA′′A),
=2×60°,
=120°.
所以答案是:120°.

【考點精析】關于本題考查的三角形的外角和線段垂直平分線的性質,需要了解三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】長為8,5,4,3的四根木條,選其中三根組成三角形,選法有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場統(tǒng)計了每個營業(yè)員在某月的銷售額,繪制了如下的條形統(tǒng)計圖以及不完整的扇形統(tǒng)計圖:

解答下列問題:
(1)設營業(yè)員的月銷售額為x(單位:萬元),商場規(guī)定:當x<15時為不稱職,當15≤x<20時,為基本稱職,當20≤x<25為稱職,當x≥25時為優(yōu)秀.則扇形統(tǒng)計圖中的a= , b=
(2)所有營業(yè)員月銷售額的中位數(shù)和眾數(shù)分別是多少?
(3)為了調動營業(yè)員的積極性,決定制定一個月銷售額獎勵標準,凡到達或超過這個標準的營業(yè)員將受到獎勵.如果要使得營業(yè)員的半數(shù)左右能獲獎,獎勵標準應定為多少萬元?并簡述其理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】-0.2的倒數(shù)是(  )

A.-2B.-5C.5D.0.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用長為4cm,5cm6cm的三條線段圍成一個三角形,該事件是( 。

A. 隨機事件 B. 必然事件 C. 不可能事件 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三邊的中線AD、BE、CF的公共點為G,若S△ABC=12,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點A坐標為(2,0),以OA為邊在第一象限內(nèi)作等邊OAB,點C為x軸上一動點,且在點A右側,連接BC,以BC為邊在第一象限內(nèi)作等邊BCD,連接AD交BC于E.

(1)直接回答:OBC與ABD全等嗎?

試說明:無論點C如何移動,AD始終與OB平行;

(2)當點C運動到使AC2=AEAD時,如圖2,經(jīng)過O、B、C三點的拋物線為y1.試問:y1上是否存在動點P,使BEP為直角三角形且BE為直角邊?若存在,求出點P坐標;若不存在,說明理由;

(3)在(2)的條件下,將y1沿x軸翻折得y2,設y1與y2組成的圖形為M,函數(shù)的圖象l與M有公共點.試寫出:l與M的公共點為3個時,m的取值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式2ab2﹣8a2b提出的公因式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗同學要畫∠AOB的平分線,卻沒有量角器和圓規(guī),于是她用三角尺按下面方法畫角平分線:

①在∠AOB的兩邊上,分別取OM=ON;
②分別過點M、N作OA、OB的垂線,交點為P;
③畫射線OP,則OP為∠AOB的平分線.
(1)請問:小麗的畫法正確嗎?試證明你的結論;
(2)如果你現(xiàn)在只有刻度尺,能否畫一個角的角平分線?請你在備用圖中試一試.(不需要寫作法,但是要讓讀者看懂,你可以在圖中標明數(shù)據(jù))

查看答案和解析>>

同步練習冊答案