已知:在銳角△ABC中,AC=a,AB與BC所在直線成45°角,AC與BC所在直線形成的夾角的余弦值為(即cosC=),則AC邊上的中線長(zhǎng)是     

試題分析:首先作△ABC的高AD,解直角△ACD與直角△ABD,得到BC的長(zhǎng),再利用余弦定理求解.
解:作△ABC的高AD,BE為AC邊的中線

∵在直角△ACD中,AC=a,cosC=,
∴CD=,AD=
∵在直角△ABD中,∠ABD=45°,
∴BD=AD=,
∴BC=BD+CD=
在△BCE中,由余弦定理,得
BE2=BC2+EC2-2BC•EC•cosC

點(diǎn)評(píng):解直角三角形是初中數(shù)學(xué)的重點(diǎn),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

A、B兩市相距150千米,分別從A、B處測(cè)得國(guó)家級(jí)風(fēng)景區(qū)中心C處的方位角如圖所示,風(fēng)景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開(kāi)發(fā)旅游,有關(guān)部門(mén)設(shè)計(jì)修建連接AB兩市的高速公路.問(wèn)連接AB高速公路是否穿過(guò)風(fēng)景區(qū),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

計(jì)算:     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)

(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(a,0)(a>0),B(2,3),C(0,3).過(guò)原點(diǎn)O作直線l,使它經(jīng)過(guò)第一、三象限,直線l與y軸的正半軸所成角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點(diǎn)C落在點(diǎn)D處,我們把這個(gè)操作過(guò)程記為FZ[θ,a].

【理解】
若點(diǎn)D與點(diǎn)A重合,則這個(gè)操作過(guò)程為FZ[      ];
【嘗試】
(1)若點(diǎn)D恰為AB的中點(diǎn)(如圖2),求θ;

(2)經(jīng)過(guò)FZ[45°,a]操作,點(diǎn)B落在點(diǎn)E處,若點(diǎn)E在四邊形0ABC的邊AB上,求出a的值;若點(diǎn)E落在四邊形0ABC的外部,直接寫(xiě)出a的取值范圍;
【探究】
經(jīng)過(guò)FZ[θ,a]操作后,作直線CD交x軸于點(diǎn)G,交直線AB于點(diǎn)H,使得△ODG與△GAH是一對(duì)相似的等腰三角形,直接寫(xiě)出FZ[θ,a].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:計(jì)算題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,為測(cè)量位于一水塘旁的兩點(diǎn)A、B間的距離,在地面上確定點(diǎn)O,分別取OA、OB的中點(diǎn)C、D,量得CD=20m,則A、B之間的距離是     m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知tanA=1,則銳角A的度數(shù)是
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

sin60°=
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案