精英家教網 > 初中數學 > 題目詳情
如圖1,在平面直角坐標系中,已知點A(0,4
3
),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒
3
個單位的速度運動,設運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數式表示),并求出當等邊△PMN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以OD為邊在Rt△AOB內部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求精英家教網出當0≤t≤2秒時S與t的函數關系式,并求出S的最大值.
分析:(1)先在直角三角形AOB中,根據∠ABO的度數和OA的長,求出OB的長,即可得出B點的坐標,然后用待定系數法即可求出直線AB的解析式.
(2)求等邊三角形的邊長就是求出PM的長,可在直角三角形PMB中,用t表示出BP的長,然后根據∠ABO的度數,求出PM的長.
當M、O重合時,可在直角三角形AOP中,根據OA的長求出AP的長,然后根據P點的速度即可求出t的值.
(3)本題要分情況進行討論:
①當N在D點左側且E在PM右側或在PM上時,即當0≤t≤1時,重合部分是直角梯形EGNO.
②當N在D點左側且E在PM左側時,即當1<t<2時,此時重復部分為五邊形,(如圖3)其面積可用△PMN的面積-△PIG的面積-△OMF的面積來求得.(也可用梯形ONGE的面積-三角形FEI的面積來求).
③當N、D重合時,即t=2時,此時M、O也重合,此時重合部分為等腰梯形.
根據上述三種情況,可以得出三種不同的關于重合部分面積與t的函數關系式,進而可根據函數的性質和各自的自變量的取值范圍求出對應的S的最大值.
解答:解:(1)由OA=4
3
,∠ABO=30°,得到OB=12,
∴B(12,0),設直線AB解析式為y=kx+b,
把A和B坐標代入得:
b=4
3
12k+b=0
,
解得:
k=-
3
3
b=4
3
,
則直線AB的解析式為:y=-
3
3
x+4
3


(2)∵∠AOB=90°,∠ABO=30°,
∴AB=2OA=8
3

∵AP=
3
t,
∴BP=AB-AP=8
3
-
3
t,
∵△PMN是等邊三角形,
∴∠MPB=90°,
∵tan∠PBM=
PM
PB
,
∴PM=(8
3
-
3
t)×
3
3
=8-t.
如圖1,過P分別作PQ⊥y軸于Q,PS⊥x軸于S,
可求得AQ=
1
2
AP=
3
2
t,PS=QO=4
3
-
3
2
t,
∴PM=(4
3
-
3
t
2
)÷
3
2
=8-t,
當點M與點O重合時,
∵∠BAO=60°,
∴AO=2AP.
∴4
3
=2
3
t,
∴t=2.
精英家教網
(3)①當0≤t≤1時,見圖2.
設PN交EC于點G,重疊部分為直角梯形EONG,作GH⊥OB于H.
∵∠GNH=60°,GH=2
3
,
∴HN=2,
∵PM=8-t,
∴BM=16-2t,
∵OB=12,
∴ON=(8-t)-(16-2t-12)=4+t,
∴OH=ON-HN=4+t-2=2+t=EG,
∴S=
1
2
(2+t+4+t)×2
3
=2
3
t+6
3

∵S隨t的增大而增大,
∴當t=1時,Smax=8
3

②當1<t<2時,見圖3.
設PM交EC于點I,交EO于點F,PN交EC于點G,重疊部分為五邊形OFIGN.
作GH⊥OB于H,
∵FO=4
3
-2
3
t,
∴EF=2
3
-(4
3
-2
3
t)=2
3
t-2
3
,
∴EI=2t-2.
∴S=S梯形ONGE-S△FEI=2
3
t+6
3
-
1
2
(2t-2)(2
3
t-2
3
)=-2
3
t2+6
3
t+4
3

由題意可得MO=4-2t,OF=(4-2t)×
3
,PC=4
3
-
3
t,PI=4-t,
再計算S△FMO=
1
2
(4-2t)2×
3

S△PMN=
3
4
(8-t)2,S△PIG=
3
4
(4-t)2
∴S=S△PMN-S△PIG-S△FMO=
3
4
(8-t)2-
3
4
(4-t)2-
1
2
(4-2t)2×
3

=-2
3
t2+6
3
t+4
3

∵-2
3
<0,
∴當t=
3
2
時,S有最大值,Smax=
17
3
2

③當t=2時,MP=MN=6,即N與D重合,
設PM交EC于點I,PD交EC于點G,重疊部
分為等腰梯形IMNG,見圖4.S=
3
4
×62-
3
4
×22=8
3
,
綜上所述:當0≤t≤1時,S=2
3
t+6
3
;
當1<t<2時,S=-2
3
t2+6
3
t+4
3
;
當t=2時,S=8
3

精英家教網
17
3
2
>8
3
,
∴S的最大值是
17
3
2
點評:本題考查一次函數解析式的確定、圖形的面積求法、三角形相似及二次函數的綜合應用等知識,綜合性強,考查學生分類討論,數形結合的數學思想方法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

23、在數學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內畫兩條互相垂直,并且有公共原點O的數軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數軸上所表示的數分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數學 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數學 來源:同步輕松練習 八年級 數學 上 題型:059

學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據表中的數據,將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.

(3)請你猜一猜上述各點會在某一個函數圖象上嗎?如果在某一函數圖象上,求出該函數的解析式,并利用你探求的結果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數學 來源:2013-2014學年北京海淀區(qū)九年級第一學期期中測評數學試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現:

如圖1,當點為旋轉中心時,點繞著點旋轉180°得到點,點再繞著點旋轉180°得到點,這時點與點重合.

如圖2,當點、為旋轉中心時,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,小明發(fā)現P、兩點關于點中心對稱.

(1)請在圖2中畫出點, 小明在證明P、兩點關于點中心對稱時,除了說明P、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當、為旋轉中心時,點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在數學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內畫兩條互相垂直,并且有公共原點O的數軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數軸上所表示的數分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習冊答案