如圖,點A(1,6)和點M(m,n)都在反比例函數(shù)y=(x>0)的圖象上,
(1)k的值為    ;
(2)當m=3,求直線AM的解析式;
(3)當m>1時,過點M作MP⊥x軸,垂足為P,過點A作AB⊥y軸,垂足為B,試判斷直線BP與直線AM的位置關系,并說明理由.

(1)6
(2)直線AM解析式為y=﹣2x+8;
(3)直線BP與直線AM的位置關系為平行,理由見解析

解析試題分析:(1)將A坐標代入反比例解析式求出k的值即可;
(2)由k的值可得反比例解析式,將x=3代入反比例解析式求出y的值,從而確定M坐標,由待定系數(shù)法即可求出直線AM解析式;
(3)由MP垂直于x軸,AB垂直于y軸,得到M與P橫坐標相同,A與B縱坐標相同,表示出B與P坐標,分別求出直線AM與直線BP斜率,由兩直線斜率相等,得到兩直線平行.
試題解析:(1)將A(1,6)代入反比例解析式得:k=6;
(2)將x=3代入反比例解析式y(tǒng)=得:y=2,即M(3,2),
設直線AM解析式為y=ax+b,
把A與M代入得:,
解得:a=﹣2,b=8,
∴直線AM解析式為y=﹣2x+8;
(3)直線BP與直線AM的位置關系為平行,理由為:
當m>1時,過點M作MP⊥x軸,垂足為P,過點A作AB⊥y軸,垂足為B,
∵A(1,6),M(m,n),且mn=6,即n=,
∴B(0,6),P(m,0),
∴k直線AM=====﹣,k直線BP==﹣,即k直線AM=k直線BP,
則BP∥AM.
考點:1、待定系數(shù)法;2、反比例函數(shù);3、一次函數(shù);4、直線的斜率 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

種植草莓大戶張華現(xiàn)有22噸草莓等售,現(xiàn)有兩種銷售渠道:一是運往省城直接批發(fā)給零售商;二是在本地市場零售.經(jīng)過調(diào)查分析,這兩種銷售渠道每天銷量及每噸所獲純利潤見下表:

銷售渠道
每日銷量(噸)
每噸所獲純利潤(元)
省城批發(fā)

1200
本地零售

2000
 
受客觀因素影響,每天只能采用一種銷售渠道,草莓必須在10日內(nèi)售出.
(1)若一部分草莓運往省城批發(fā)給零售商,其余在本地市場零售,請寫出銷售22噸草莓所獲純利潤y(元)與運往省城直接批發(fā)給零售商的草莓量x(噸)之間的函數(shù)關系式;
(2)由于草莓必須在10日內(nèi)售完,請你求出x的取值范圍;
(3)怎樣安排這22噸草莓的銷售渠道,才能使所獲純利潤最大?并求出最大純利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

張先生準備在沙坪壩購買一套小戶型商品房,他去某樓盤了解情況得知, 該戶型商品房的單價是8000元/,面積如圖所示(單位:米,衛(wèi)生間的寬未定,設寬為米),售房部為張先生提供了以下兩種優(yōu)惠方案:
方案一:整套房的單價是8000元/,其中廚房可免費贈送的面積;
方案二:整套房按原銷售總金額的9折出售.
(1)用表示方案一中購買一套該戶型商品房的總金額,用表示方案二中購買一套該戶型商品房的總金額,分別求出、的關系式;
(2)求取何值時,兩種優(yōu)惠方案的總金額一樣多?
(3)張先生因現(xiàn)金不夠,于2012年1月在建行借了9萬元住房貸款,貸款期限為6年,從開始貸款的下一個月起逐月償還,貸款月利率是0.5%,每月還款數(shù)額=平均每月應還的貸款本金數(shù)額+月利息,月利息=上月所剩貸款本金數(shù)額×月利率.
①張先生借款后第一個月應還款數(shù)額是多少元?
②假設貸款月利率不變,若張先生在借款后第,是正整數(shù))個月的還款數(shù)額為P,請寫出P與之間的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知某工廠計劃用庫存的302m3木料為某學校生產(chǎn)500套桌椅,供該校1250名學生使用,該廠生產(chǎn)的桌椅分為A,B兩種型號,有關數(shù)據(jù)如下:

桌椅型號
一套桌椅所坐學生人數(shù)(單位:人)
生產(chǎn)一套桌椅所需木材(單位:m3
一套桌椅的生產(chǎn)成本(單位:元)
一套桌椅的運費(單位:元)
A
2
0.5
100
2
B
3
0.7
120
4
 
設生產(chǎn)A型桌椅x(套),生產(chǎn)全部桌椅并運往該校的總費用(總費用=生產(chǎn)成本+運費)為y元.
(1)求y與x之間的關系式,并指出x的取值范圍;
(2)當總費用y最小時,求相應的x值及此時y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點A(-2,0),與y軸交于點C,與反比例函數(shù)在第一象限內(nèi)的圖象交于點B(m,n),連結OB.若SAOB=6,SBOC=2.
(1)求一次函數(shù)的表達式;
(2)求反比例函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

天水市某校為了開展“陽光體育”活動,需購買某一品牌的羽毛球,甲、乙兩超市均以每只3元的價格出售,并對一次性購買這一品牌羽毛球不低于100只的用戶均實行優(yōu)惠:甲超市每只羽毛球按原價的八折出售;乙超市送15只羽毛球后其余羽毛球每只按原價的九折出售.
(1)請你任選一超市,一次性購買x(x≥100且x為整數(shù))只該品牌羽毛球,寫出所付錢y(元)與x之間的函數(shù)關系式.
(2)若共購買260只該品牌羽毛球,其中在甲超市以甲超市的優(yōu)惠方式購買一部分,剩下的又在乙超市以乙超市的優(yōu)惠方式購買.購買260只該品牌羽毛球至少需要付多少元錢?這時在甲、乙兩超市分別購買該品牌羽毛球多少只?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,點O坐標原點,直線l分別交x軸、y軸于A,B兩點,OA<OB,且OA、OB的長分別是一元二次方程的兩根.
(1)求直線AB的函數(shù)表達式;
(2)點P是y軸上的點,點Q第一象限內(nèi)的點.若以A、B、P、Q為頂點的四邊形是菱形,請直接寫出Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在購買某場足球賽門票時,設購買門票數(shù)為x(張),總費用為y(元).現(xiàn)有兩種購買方案:
方案一:若單位贊助廣告費10000元,則該單位所購門票的價格為每張60元;
(總費用=廣告贊助費+門票費)
方案二:購買門票方式如圖所示.
解答下列問題:
(1)方案一中,y與x的函數(shù)關系式為     
方案二中,當0≤x≤100時,y與x的函數(shù)關系式為     
當x>100時,y與x的函數(shù)關系式為        ;
(2)如果購買本場足球賽門票超過100張,你將選擇哪一種方案,使總費用最?請說明理由;
(3)甲、乙兩單位分別采用方案一、方案二購買本場足球賽門票共700張,花去總費用計58000元,求甲、乙兩單位各購買門票多少張.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在一次運輸任務中,一輛汽車將一批貨物從甲地運往乙地,到達乙地卸貨后返回.設汽車從甲地出發(fā)x(h)時,汽車與甲地的距離為y(km),y與x的函數(shù)關系如圖所示.
(1)這輛汽車的往、返速度是否相同?請說明理由;
(2)寫出返程中y與x之間的函數(shù)表達式;并指出其中自變量的取值范圍.
(3)求這輛汽車從甲地出發(fā)4h時與甲地的距離.

查看答案和解析>>

同步練習冊答案