如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)C點(diǎn)的直線互相垂直,垂足為D,且AC平分∠DAB.
(1)求證:DC為⊙O的切線;
(2)若⊙O的半徑為3,AD=4,求AC的長(zhǎng).
(1)證明見(jiàn)解析; (2).
【解析】
試題分析:(1)連接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分線的性質(zhì)可以證明∠DAC=∠OCA,接著利用平行線的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可證明直線CD與⊙O相切于C點(diǎn).
(2)連接BC,根據(jù)圓周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性質(zhì)即可解決問(wèn)題.
試題解析:(1)如圖,連接OC,
∵OA=OC,∴∠OAC=∠OCA.
∵AC平分∠DAB,∴∠DAC=∠OAC. ∴∠DAC=∠OCA.
∴OC∥AD.
∵AD⊥CD,∴OC⊥CD.
∵OC是⊙O的半徑,∴DC為⊙O的切線.
(2)如圖,連接BC,則∠ACB=90°,
∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB.
∴.∴AC2=AD•AB.
∵⊙O的半徑為3,AD=4,∴AB=6.
∴。.
考點(diǎn):1.等腰三角形的性質(zhì);2.平行的判定和性質(zhì);3.切線判定;4.圓周角定理;5.相似三角形的判定和性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、1cm | B、2cm | C、3cm | D、4cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應(yīng)性考試數(shù)學(xué)試題 題型:013
如圖,AB為⊙O的直甲徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線于D,且CO=CD,則∠PCA=
A.60°
B.65°
C.67.5°
D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測(cè)試數(shù)學(xué)試卷(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com