如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)C點(diǎn)的直線互相垂直,垂足為D,且AC平分∠DAB.

(1)求證:DC為⊙O的切線;

(2)若⊙O的半徑為3,AD=4,求AC的長(zhǎng).

 

【答案】

(1)證明見(jiàn)解析; (2).

【解析】

試題分析:(1)連接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分線的性質(zhì)可以證明∠DAC=∠OCA,接著利用平行線的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可證明直線CD與⊙O相切于C點(diǎn).

(2)連接BC,根據(jù)圓周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性質(zhì)即可解決問(wèn)題.

試題解析:(1)如圖,連接OC,

∵OA=OC,∴∠OAC=∠OCA.

∵AC平分∠DAB,∴∠DAC=∠OAC. ∴∠DAC=∠OCA.

∴OC∥AD.

∵AD⊥CD,∴OC⊥CD.

∵OC是⊙O的半徑,∴DC為⊙O的切線.

(2)如圖,連接BC,則∠ACB=90°,

∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB.

.∴AC2=AD•AB.

∵⊙O的半徑為3,AD=4,∴AB=6.

。.

考點(diǎn):1.等腰三角形的性質(zhì);2.平行的判定和性質(zhì);3.切線判定;4.圓周角定理;5.相似三角形的判定和性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長(zhǎng)為( 。
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,則水管的長(zhǎng)為
40m
40m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應(yīng)性考試數(shù)學(xué)試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長(zhǎng)為


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測(cè)試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長(zhǎng)為( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案