已知拋物線y=ax2的開口向上,則直線y=ax-a一定不經(jīng)過第
象限.
分析:二次函數(shù)圖象的開口向上時,二次項系數(shù)a>0;一次函數(shù)y=kx+b(k≠0)的一次項系數(shù)k>0、b<0時,函數(shù)圖象經(jīng)過第一、三、四象限.
解答:解:∵二次函數(shù)y=ax2的圖象開口向上,
∴a>0,-a<0;
∴直線y=ax-a經(jīng)過的象限是第一、三、四象限,即不經(jīng)過第二象限.
故答案為二.
點評:本題主要考查了二次函數(shù)、一次函數(shù)圖象與系數(shù)的關(guān)系.二次函數(shù)圖象的開口方向決定了二次項系數(shù)a的符號.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標(biāo)和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標(biāo)為(2,-3),那么該拋物線有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標(biāo)原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當(dāng)x≥1時y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案