如圖,正方形ABCD的邊長為2,點E是BC邊的中點,過點B作BG⊥AE,垂足為G,延長BG交AC于點F,則CF=   
【答案】分析:延長BF交CD于H.根據(jù)勾股定理求得AC的長,根據(jù)ASA可以證明△ABE≌△BCH,則CH=BE=1,再根據(jù)相似三角形的性質(zhì)解.
解答:解:延長BF交CD于H.
在正方形ABCD中,正方形的邊長是2,根據(jù)勾股定理,得AC=2
∵AB=BC,∠ABE=∠BCH=90°,∠BAE=∠CBH,
∴△ABE≌△BCH,
∴CH=BE=1.
∵AB∥CD,
∴△ABF∽△CHF,
=2,
∴CF=AC=
故答案為
點評:此題綜合運用了正方形的性質(zhì)、全等三角形的判定及性質(zhì)、相似三角形的判定及性質(zhì),綜合性較強.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案