22、如圖,在正方形ABCD中,E是AB邊上任一點(diǎn),BG⊥CE,垂足為點(diǎn)O,交AC于點(diǎn)F,交AD于點(diǎn)G.
(1)證明:BE=AG;
(2)當(dāng)點(diǎn)E是AB邊中點(diǎn)時(shí),試比較∠AEF和∠CEB的大小,并說明理由.
分析:根據(jù)正方形的性質(zhì)利用ASA判定△GAB≌△EBC,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得到AG=BE;利用SAS判定△GAF≌△EAF,從而得到∠AGF=∠AEF,由△GAB≌△EBC可得到∠AGF=∠CEB;所以∠AEF=∠CEB.
解答:(1)解:∵四邊形ABCD是正方形,
∴∠ABC=90°,∴∠1+∠3=90°,
∵BG⊥CE∠BOC=90°,
∴∠2+∠3=90°,∴∠1=∠2,
在△GAB和△EBC中,
∵∠GAB=∠EBC=90°,AB=BC,∠1=∠2,
∴△GAB≌△EBC,(ASA)
∴BE=AG.

(2)解:當(dāng)點(diǎn)E位于線段AB中點(diǎn)時(shí),∠AEF=∠CEB.
理由如下:當(dāng)點(diǎn)E位于線段AB中點(diǎn)時(shí),AE=BE,
由(1)知,∵AG=BE,
∴AG=AE,
∵四邊形ABCD是正方形,
∴∠GAF=∠EAF=45°,
又∵AF=AF,
∴△GAF≌△EAF,(SAS)
∴∠AGF=∠AEF,
由(1)知,△GAB≌△EBC,
∴∠AGF=∠CEB,
∴∠AEF=∠CEB.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)正方形的性質(zhì)及全等三角形的判定的掌握情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個(gè)三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線精英家教網(wǎng),交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度;
(3)若以點(diǎn)O,D,E,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點(diǎn)E是邊AC的中點(diǎn),連接DE,DE的延長(zhǎng)線與邊BC相交于點(diǎn)F,AG∥BC,交DE于點(diǎn)G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長(zhǎng)為3+
3

(1)如圖①,正方形EFPN的頂點(diǎn)E、F在邊AB上,頂點(diǎn)N在邊AC上,在正三角形ABC及其內(nèi)部,以點(diǎn)A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長(zhǎng);
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點(diǎn)P、N分別在邊CB、CA上,求這兩個(gè)正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案