如圖,AB是⊙O的直徑,直線EF切⊙O于點(diǎn)C,AD⊥EF于點(diǎn)D.
(1)求證:AC平分∠BAD;
(2)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

(1)證明:連接OC,
∵直線EF切⊙O于點(diǎn)C,
∴OC⊥EF,
∵AD⊥EF,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OA=OC,
∴∠BAC=∠OCA,
∴∠DAC=∠BAC,
即AC平分∠BAD;

(2)解:∵∠ACD=30°,∠OCD=90°,
∴∠OCA=60°.
∵OC=OA,
∴△OAC是等邊三角形,
∵⊙O的半徑為2,
∴AC=OA=OC=2,∠AOC=60°,
∵在Rt△ACD中,AD=AC=1,
由勾股定理得:DC=,
∴S陰影=S梯形OCDA-S扇形OCA=×(2+1)×-=
∴陰影部分的面積為:
分析:(1)首先連接OC,由直線EF切⊙O于點(diǎn)C,AD⊥EF,易證得OC∥AD,又由OA=OC,易證得∠DAC=∠BAC,即AC平分∠BAD;
(2)由AB是⊙O的直徑,易證得△OAC是等邊三角形,然后由勾股定理求得AD的長,又由S陰影=S梯形OCDA-S扇形OCA,即可求得答案.
點(diǎn)評:此題考查了切線的性質(zhì)、平行線的判定與性質(zhì)、等邊三角形的判定與性質(zhì)以及扇形的面積.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊答案