作業(yè)寶已知:如圖,△ABC中,AD平分∠BAC,BD⊥AD于D,點(diǎn)E的BC邊的中點(diǎn),AB=6,AC=8,則DE長(zhǎng)為________.

1
分析:延長(zhǎng)BD交AC于F點(diǎn).根據(jù)AD平分∠BAC,且AD⊥BD,證明△ABD≌△AFD,得D是BF的中點(diǎn);又E為BC中點(diǎn),所以DE是△BCF的中位線,利用中位線定理求解.
解答:解:延長(zhǎng)BD交AC于F,
∵AD平分∠BAC,
∴∠FAD=∠BAD;
∵AD⊥BD,
∴∠ADF=∠ADB;
又AD=AD,
∴△ABD≌△AFD,
∴BD=DF,AF=AB=6cm,
∴CF=AC-AF=8-6=2,
∵E為BC中點(diǎn),
∴DE=CF=×2=1;
故答案為:1.
點(diǎn)評(píng):此題考查了三角形的中位線定理,關(guān)鍵是作輔助線構(gòu)造全等三角形,證明D是BF的中點(diǎn),從而證明DE是三角形的中位線,運(yùn)用中位線定理求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點(diǎn)F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長(zhǎng)線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
求:BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上.
(1)請(qǐng)問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請(qǐng)問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案