如圖:點(diǎn)P是∠AOB內(nèi)一定點(diǎn),點(diǎn)M、N分別在邊OA、OB上運(yùn)動(dòng),若∠AOB=45°,OP=,則△PMN的周長(zhǎng)的最小值為   
【答案】分析:作P關(guān)于OA,OB的對(duì)稱點(diǎn)C,D.連接OC,OD.則當(dāng)M,N是CD與OA,OB的交點(diǎn)時(shí),△PMN的周長(zhǎng)最短,最短的值是CD的長(zhǎng).根據(jù)對(duì)稱的性質(zhì)可以證得:△COD是等腰直角三角形,據(jù)此即可求解.
解答:解:作P關(guān)于OA,OB的對(duì)稱點(diǎn)C,D.連接OC,OD.則當(dāng)M,N是CD與OA,OB的交點(diǎn)時(shí),△PMN的周長(zhǎng)最短,最短的值是CD的長(zhǎng).
∵PC關(guān)于OA對(duì)稱,
∴∠COP=2∠AOP,OC=OP
同理,∠DOP=2∠BOP,OP=OD
∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.
∴△COD是等腰直角三角形.
則CD=OC=×3=6.
點(diǎn)評(píng):本題考查了對(duì)稱的性質(zhì),正確作出圖形,理解△PMN周長(zhǎng)最小的條件是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

63、如圖,點(diǎn)P是∠AOB的平分線上的一點(diǎn),作PD⊥OA,垂足為D,PE⊥OB垂足為E,DE交OC于點(diǎn)F.則在圖中:
(1)總共有
3
對(duì)全等三角形;
(2)總共
8
個(gè)直角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、作圖題:如圖,點(diǎn)P是∠AOB內(nèi)一點(diǎn).
(1)過點(diǎn)p畫一條直線平行于BO;(2)過點(diǎn)P畫一條直線垂直于AO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是∠AOB內(nèi)的一點(diǎn),過點(diǎn)P作PC∥OB,PD∥OA,分別交OA、OB于點(diǎn)C、D,且PE⊥OA,精英家教網(wǎng)PF⊥OB,垂足分別為點(diǎn)E、F.
(1)求證:OC•CE=OD•DF;
(2)當(dāng)點(diǎn)P位于∠AOB的什么位置時(shí),四邊形CODP是菱形并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是∠AOB內(nèi)部一點(diǎn),點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)是H、G,直線HG交OA、OB于點(diǎn)C、D,若HG=4cm,且∠AOB=30°,則△HOG的周長(zhǎng)是
12
12
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案