(1)解:作圖如圖.
證明:在△ABO與△ADO中,
∵
,
∴△ABO≌△ADO(SAS),
∴BO=OD,
∵AD∥BC,
∴∠OBE=∠ODA,∠OAD=∠OEB,
在△BOE與△DOA中,
∵
,
∴△BOE≌△DOA(AAS),
∴BE=AD(平行且相等),
∴四邊形ABED為平行四邊形,另AB=AD,
∴四邊形ABED為菱形;
(2)證明:設(shè)DE=2a,則CE=4a,過點D作DF⊥BC,
∵∠ABC=60°,∴∠DEF=60°,
∴∠EDF=30°,∴EF=
DE=a,
則DF=
,CF=CE-EF=4a-a=3a,
∴
,
∴DE=2a,EC=4a,CD=
,構(gòu)成一組勾股數(shù),
∴△EDC為直角三角形,則ED⊥DC.
分析:(1)分別以點B、D為圓心,以大于AB的長度為半徑,分別作弧,且兩弧交于一點P,連接AP,則AP即為∠BAD的平分線,且AP交BC于點E;
可通過證△BOE≌△BOA,得AO=OE,則AD與BE平行且相等,由此證得四邊形ABED是平行四邊形,而AB=AD,根據(jù)一組鄰邊相等的平行四邊形是菱形,即可證得所求的結(jié)論;
(2)已知了EC、BE的比例關(guān)系,可用未知數(shù)表示出BE、EC的長;過D作DF⊥BC于F,在Rt△DEF中,易知∠DEF=∠ABC=60°,可用DE(即BE)的長表示出EF、DF,進而表示出FC的長;在Rt△CFD中,根據(jù)DF、CF的長,可由勾股定理求出CD的長,進而可根據(jù)DE、EC、CD的長由勾股定理證得DE⊥DC.
點評:此題主要考查了梯形的性質(zhì)、尺規(guī)作圖-角平分線的作法、菱形的判定和性質(zhì)、勾股定理的應(yīng)用等知識.