如圖,點O,B坐標分別為(0,0),(3,0),將△OAB繞A點按順時針方向旋轉90°得到△O′AB′,則點B′的坐標為   
【答案】分析:根據(jù)點O,B坐標分別為(0,0),(3,0),首先確定坐標軸的位置,然后根據(jù)旋轉的作圖,作出B′,即可確定坐標.
解答:解:由圖知B點的坐標為(3,0),根據(jù)旋轉中心A,旋轉方向順時針,旋轉角度90°,畫圖.
從而得B′點坐標為(2,3).
故答案為:(2,3).
點評:本題涉及圖形變換--旋轉,體現(xiàn)了新課標的精神.應抓住旋轉的三要素:旋轉中心、旋轉方向、旋轉角度.通過畫圖求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:拋物線y=ax2+bx+c經過點O(0,0),A(7,4),且對稱軸l與x軸交于點B(5,0).
(1)求拋物線的表達式;
(2)如圖,點E、F分別是y軸、對稱軸l上的點,且四邊形EOBF是矩形,點C(5,
52
)
是BF上一點,將△BOC沿著直線OC翻折,B點與線段EF上的D點重合,求D點的坐標;
(3)在(2)的條件下,點G是對稱軸l上的點,直線DG交CO于點H精英家教網,S△DOH:S△DHC=1:4,求G點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把拋物線l1:y=-x2向右平移1個單位長度,再向上平移4個單位長度,得到拋物線l2.如圖,精英家教網點A、B分別是拋物線l2與x軸的交點,點C是拋物線l2與y軸的交點.
(1)直接寫出拋物線l2的解析式及其對稱軸;
(2)在拋物線l2的對稱軸上求一點P,使得△PAC的周長最。堅趫D中畫出點P的位置,并求點P的坐標;
(3)若點D是拋物線l2上的一動點,且點D在第一象限內,過點D作DE⊥x軸,垂足為E,DE與直線BC交于點F.設D點的橫坐標為t.試探究:
①四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標;若不能,請簡要說明理由;
②四邊形CEBCD能否為梯形?若能,請求出符合條件的D點坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點D,E分別是矩形OABC中AB和BC邊上的中點,點B的坐標為(6,4)
(1)寫出A,C,E,D四點的坐標;并判斷點O到直線DE的距離是否等于線段的OE長;
(2)動點F在線段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時點F的坐標(利用圖1解答);
(3)我們給出如下定義:分別過拋物向上的兩點(不在x軸上)作x軸的垂線,如果以這兩點及垂足為頂點的矩形在這條拋物線與x軸圍成的封閉圖形內部,則稱這個矩形是這條拋物線的內接矩形,請你理解上述定義,解答下面的問題:若矩形OABC是某個拋物線的周長最大的內接矩形,求這個拋物線的解析式(利用圖2解答).
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•宜昌二模)如圖,矩形ABCD頂點坐標分別是A(-1,2),B(1,2),C(1,-2),D(-1,-2),點P是邊長CD上的動點,以P為頂點的拋物線y=a(x-h)2+k(a為大于0的常數(shù))和邊AD、BC分別交于點E、F,和y軸交于點H,連接EF和y軸交于點G..
(1)直接寫出k的值,并用a,h表示點E,F(xiàn)的坐標;
(2)當CF=4DE時,求點p的坐標;
(3)設DE+FC=t,當t的最小值為2時,求GH的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•廣州)如圖,點B的坐標為(0,-2),點A在x軸正半軸上,將Rt△AOB繞y軸旋轉一周,得到一個圓錐.
(1)當圓錐的側面積為
5
π時,求AB所在直線的函數(shù)解析式;
(2)若已知OA的長度為a,按這個圓錐的形狀造一個容器,并在母線AB上刻出把這個容器的容積兩等分的刻度點C,試用含a的代數(shù)式去表示BC的長度t(圓錐體積公式:V=
1
3
πr2h,其中r和h分別是圓錐的底面半徑和高).

查看答案和解析>>

同步練習冊答案