如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點,過E作直線//BC,交直線CD于點F.將直線向右平移,設(shè)平移距離BE為(t0),直角梯形ABCD被直線掃過的面積(圖中陰影部份)為S,S關(guān)于的函數(shù)圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.

1.梯形上底的長AB=     

2.直角梯形ABCD的面積=         

3.寫出圖②中射線NQ表示的實際意義;

4.當時,求S關(guān)于的函數(shù)關(guān)系式;

5.當t為何值時,直線l將直角梯形ABCD分成的兩部分面積之比為1: 3.

 

 

1.

2.S梯形ABCD=12 .

3.當平移距離BE大于等于4時,直角梯形ABCD被直線掃過的面積恒為12.

4.當時,如下圖所示,

直角梯形ABCD被直線掃過的面積S=S直角梯形ABCD-SRt△DOF

    

5.①當時,有

,解得.·················· 10分

②當時,有

,

,解得

(舍去).

答:當時,直線l將直角梯形ABCD分成的兩部分面積之比為1: 3.   12分

解析:略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,AD∥BC,∠B=90°,EF是中位線,ED平分∠ADC,下面的結(jié)論:①CE平分∠BCD;②CD=AD+BC;③點E到CD的距離為
1
2
AB,其中正確結(jié)論的個數(shù)有( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,∠ABC=90°,DC∥AB,BC=3,DC=4,AD=5,動點P從點B出發(fā),由B→C→D→A沿邊運動時,則△ABP的最大面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,AB⊥BC,AD=1,BC=3,CD=4,EF為梯形的中位線,DH為梯形的高且交EF于點G,下列結(jié)論:①G為EF的中點;②△EHF為等邊三角形;③四邊形EHCF為菱形;④S△BEH=S△CFH,其中正確的結(jié)論有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.動點P從點B出發(fā),沿射線BC的方向以每秒2個單位長的速度運動,動點Q同時從點A出發(fā),在線段AD上以每秒1個單位長的速度向點D運動,當其中一個動點到達端點時另一個動點也隨之停止運動.設(shè)運動的時間為t(秒).
(1)設(shè)△DPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)當t為何值時,四邊形PCDQ是平行四邊形?
(3)分別求出當t為何值時,①PD=PQ,②DQ=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,∠A=∠D=90°,截取AE=BF=DG=x.已知AB=6,CD=3,AD=4.求四邊形CGEF的面積S關(guān)于x的函數(shù)表達式和x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案