(2010•清遠(yuǎn))如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長(zhǎng)為( )

A.4cm
B.5cm
C.6cm
D.8cm
【答案】分析:由平行四邊形ABCD,根據(jù)平行四邊形的對(duì)角線互相平分,可得OA=OC,OB=OD,又由∠ODA=90°,根據(jù)勾股定理,即可求得AD的長(zhǎng).
解答:解:∵四邊形ABCD是平行四邊形,AC=10cm,BD=6cm
∴OA=OC=AC=5cm,OB=OD=BD=3cm,
∵∠ODA=90°,
∴AD==4cm.
故選A.
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì):平行四邊形的對(duì)角線互相平分,解題時(shí)還要注意勾股定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•清遠(yuǎn))如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點(diǎn),拋物線y=x2+bx+c同時(shí)經(jīng)過(guò)B、C兩點(diǎn),點(diǎn)A是拋物線與x軸的另一個(gè)交點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在線段BC上,且S△PAC=S△PAB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省清遠(yuǎn)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•清遠(yuǎn))如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點(diǎn),拋物線y=x2+bx+c同時(shí)經(jīng)過(guò)B、C兩點(diǎn),點(diǎn)A是拋物線與x軸的另一個(gè)交點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在線段BC上,且S△PAC=S△PAB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圓》(15)(解析版) 題型:解答題

(2010•清遠(yuǎn))如下圖,在⊙O中,點(diǎn)P在直徑AB上運(yùn)動(dòng),但與A、B兩點(diǎn)不重合,過(guò)點(diǎn)P作弦CE⊥AB,在上任取一點(diǎn)D,直線CD與直線AB交于點(diǎn)F,弦DE交直線AB于點(diǎn)M,連接CM.
(1)如圖1,當(dāng)點(diǎn)P運(yùn)動(dòng)到與O點(diǎn)重合時(shí),求∠FDM的度數(shù).
(2)如圖2、圖3,當(dāng)點(diǎn)P運(yùn)動(dòng)到與O點(diǎn)不重合時(shí),求證:FM•OB=DF•MC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省清遠(yuǎn)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•清遠(yuǎn))如圖,在菱形ABCD中,∠A=60°,E、F分別是AD、CD上的兩點(diǎn),且AE=DF.
求證:△ABE≌△DBF.

查看答案和解析>>

同步練習(xí)冊(cè)答案