精英家教網 > 初中數學 > 題目詳情
如圖,⊙O1,⊙O2,⊙O3,⊙O4的半徑都為1,其中⊙O1與⊙O2外切,⊙O2,⊙O3,⊙O4兩兩外切,并且O1,O2,O3三點在同一直線上.若⊙O1沿圖中箭頭所示方向在⊙O2的圓周上滾動,到第一次與⊙O4重合的位置終止,在上述滾動過程中圓心O1移動的路徑長為   
【答案】分析:圓心O1移動的路徑是一段弧長,這段弧長的圓心是O2,半徑是O1O2,旋轉的度數是120度,所以根據弧長公式可得.
解答:解:=
點評:本題的關鍵是弄準圓心角及半徑和旋轉的度數,然后利用弧長公式進行計算.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,⊙O1與⊙O2外切于點P,外公切線AB切⊙O1于點A,切⊙O2于點B,
(1)求證:AP⊥BP;
(2)若⊙O1與⊙O2的半徑分別為r和R,求證:
AP2
BP2
=
r
R

(3)延長AP交⊙O2于C,連接BC,若r:R=2:3,求tan∠C的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,⊙O1、⊙O2相交于點A、B,現給出4個命題:
(1)若AC是⊙O2的切線且交⊙O1于點C,AD是⊙O1的切線且交⊙O2于點D,則AB2=BC•BD;
(2)連接AB、O1O2,若O1A=15cm,O2A=20cm,AB=24cm,則O1O2=25cm;
(3)若CA是⊙O1的直徑,DA是⊙O2的一條非直徑的弦,且點D、B不重合,則C、B、D三點不在同一條直線上;
(4)若過點A作⊙O1的切線交⊙O2于點D,直線DB交⊙O1于點C,直線CA交⊙O2于點E,連接DE,則DE2=DB•DC.
則正確命題的序號是
 
.(在橫線上填上所有正確命題的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,⊙O1,⊙O2,⊙O3,⊙O4,⊙O的半徑均為2cm,⊙O與⊙O1,⊙O3相外切,⊙O與⊙O2,⊙O4相外切,并且圓心分別位于兩條互相垂直的直線L1,L2上,連接O1,O2,O3,O4得四邊形O1O2O3O4,則圖中陰影部分的面積為
 
cm2.(π≈3.14)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,⊙O1和⊙O2相交于A、B兩點,經過A的直線CD與⊙O1交于點C、與⊙O2交于點D,經過點B的直線EF與⊙O1交于點E、與⊙O2交于點F,連接CE、DF.若∠AO1E=100°,則∠D的度數為
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1998•南京)如圖,⊙O1和⊙O2內切于點P,⊙O2的弦AB經過⊙O1的圓心O1,交⊙O1于點C、D,若AC:CD:BD=3:4:2,則⊙O1與⊙O2的直徑之比為(  )

查看答案和解析>>

同步練習冊答案