精英家教網 > 初中數學 > 題目詳情
(2010•東臺市模擬)如圖,△ABO中,O是坐標原點,A,B
(1)①以原點O為位似中心,將△ABO放大,使變換后得到的△CDO與△ABO的位似比為2:1,且D在第一象限內,則C點坐標為(______
【答案】分析:(1)①首先根據點D的位置確定△COD的位置,然后根據位似比作圖,即可得到點C、D的坐標;
②可過E作y軸的垂線,設垂足為F,由于△ODE是由△ODC翻折而得,故OE=OC=2,∠EOD=∠COD=30°,根據這些條件,即可在Rt△OEF中,通過解直角三角形求出點E的坐標.
(2)在(1)題中,已經求得了E、C的坐標,利用待定系數法求解即可.
(3)四邊形MEOC中,△OEC的面積是定值,若四邊形的面積最大,則△EMC的面積最大;過M作MN∥y軸,交直線CE于N,設出點M的橫坐標,根據拋物線和直線CE的解析式即可得到MN的長,以MN為底,C、E橫坐標差的絕對值為高,即可得到△EMC的面積表達式,進而可得到關于四邊形MEOC的面積和M點橫坐標的函數關系式,根據函數的性質即可得到四邊形的面積最大值,及對應的M點坐標.
解答:解:(1)①由題意知:OC=2OA=2,
CD=2AB=2;
故C(2,0),D(2,2);
②如圖,過E作EF⊥y軸于F;
Rt△OCD中,OC=2,CD=2,則有:
∠DOC=30°;
根據折疊的性質知:
OE=OC=2,∠EOD=∠DOC=30°;
在Rt△OEF中,OE=2,∠FOE=30°,
則:FE=,OF=3,
故E(,3).

(2)由于拋物線經過E(,3),C(2,0),依題意有:
,
解得,
∴拋物線的解析式為:y=-x2+2x;

(3)過M作MN∥y軸,交CE于N;
∵E(,3),C(2,0),
∴直線EC:y=-x+6;
設M(x,-x2+2x),則N(x,-x+6),
∴MN=-x2+2x-(-x+6)=-x2+3x-6;
∴四邊形EMCO的面積S=S△EMC+S△EOC
=×(-x2+3x-6)×+×2×3
=-x2+x=-(x-2+;
∴當x=,即M(,)時,四邊形OEMC的面積最大,且最大值為
點評:此題是二次函數的綜合題,涉及到圖形的位似變化、二次函數解析式的確定、函數圖象交點坐標及圖形面積的求法、二次函數最值的應用等重要知識點,綜合性強,難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年江蘇省鹽城市某片區(qū)聯(lián)合調研考試九年級數學試卷(解析版) 題型:解答題

(2010•東臺市模擬)如圖,△ABO中,O是坐標原點,A,B
(1)①以原點O為位似中心,將△ABO放大,使變換后得到的△CDO與△ABO的位似比為2:1,且D在第一象限內,則C點坐標為(______

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省鹽城市東臺市片區(qū)聯(lián)合調研考試九年級數學試卷(解析版) 題型:解答題

(2010•東臺市模擬)如圖,△ABO中,O是坐標原點,A,B
(1)①以原點O為位似中心,將△ABO放大,使變換后得到的△CDO與△ABO的位似比為2:1,且D在第一象限內,則C點坐標為(______

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省鹽城市東臺市片區(qū)聯(lián)合調研考試九年級數學試卷(解析版) 題型:解答題

(2010•東臺市模擬)解不等式組,并寫出該不等式組的整數解.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省鹽城市東臺市九年級聯(lián)考數學試卷(解析版) 題型:解答題

(2010•東臺市模擬)已知一元二次方程(m-3)x2+2mx+m+1=0有兩個不相等的實數根,并且這兩個根又不互為相反數.
(1)求m的取值范圍;
(2)當m在取值范圍內取最小正偶數時,求方程的根.

查看答案和解析>>

同步練習冊答案