【題目】2018年國(guó)家將擴(kuò)大公共場(chǎng)所免費(fèi)上網(wǎng)范圍,某小區(qū)響應(yīng)號(hào)召調(diào)查小區(qū)居民上網(wǎng)費(fèi)用情況,隨機(jī)抽查了30戶家庭的月上網(wǎng)費(fèi)用,結(jié)果如表
月網(wǎng)費(fèi)(元) | 50 | 100 | 150 |
戶數(shù)(人) | 15 | 12 | 3 |
則關(guān)于這30戶家庭的月上網(wǎng)費(fèi)用,中位數(shù)是_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在廣饒某電器超市進(jìn)行社會(huì)實(shí)踐活動(dòng)時(shí)發(fā)現(xiàn),該超市銷售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號(hào)的電風(fēng)扇,近兩周的銷售情況如表所示:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 1800元 |
第二周 | 4臺(tái) | 10臺(tái) | 3100元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購多少臺(tái)?
(3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購方案;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個(gè)四邊形紙片ABCD,∠D=90°把紙片按如圖所示折疊,使點(diǎn)B落在AD上的B′處,AE是折痕.
(1)若B′E∥CD,求∠B的度數(shù).
(2)在(1)的條件下,如果∠C=128°,求∠EAB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB是⊙O的直徑,E是AB延長(zhǎng)線上一點(diǎn),EC切⊙O于點(diǎn)C,OP⊥AO交AC于點(diǎn)P,交EC的延長(zhǎng)線于點(diǎn)D.
(1)求證:△PCD是等腰三角形;
(2)CG⊥AB于H點(diǎn),交⊙O于G點(diǎn),過B點(diǎn)作BF∥EC,交⊙O于點(diǎn)F,交CG于Q點(diǎn),連接AF,如圖2,若sinE=,CQ=5,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題如圖①,∠DCE=∠ECB=α,∠DAE=∠EAB=β,∠D=30°,∠B=40°
(1)①用α或β表示∠CNA,∠MPA,∠CNA= , ∠MPA=
②求∠E的大。
(2)如圖②,∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,則∠E與∠B,∠D之間是否存在某種等量關(guān)系?若存在,寫出結(jié)論,說明理由;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四人進(jìn)行射擊測(cè)試,每人10次射擊的平均成績(jī)都為9環(huán),方差分別為S甲2=0.56,S乙2=0.62,S丙2=0.39,S丁2=0.42,則四人中成績(jī)最穩(wěn)定的是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面生活中,物體的運(yùn)動(dòng)情況可以看成平移的是( )
A. 時(shí)鐘擺動(dòng)的鐘擺 B. 在筆直的公路上行駛的汽車
C. 隨風(fēng)擺動(dòng)的旗幟 D. 汽車玻璃窗上兩刷的運(yùn)動(dòng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與理解 在有理數(shù)的范圍內(nèi),我們定義三個(gè)數(shù)之間的新運(yùn)算法則“⊕”:a⊕b⊕c= (|a﹣b﹣c|+a+b+c).如:(﹣1)⊕2⊕3=﹣ [|﹣1﹣2﹣3|+(﹣1)+2+3]=5
解答下列問題:
(1)計(jì)算:3⊕(﹣2)⊕(﹣3)的值;
(2)在﹣ ,﹣ ,﹣ ,…,﹣ ,0, , , ,…, 這15個(gè)數(shù)中,任意取三個(gè)數(shù)作為a,b,c的值,進(jìn)行“a⊕b⊕c”運(yùn)算,求在所有計(jì)算結(jié)果中的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠B=90°,以AB上的一點(diǎn)O為圓心,以O(shè)A為半徑的圓交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:ACAD=ABAE;
(2)如果BD是⊙O的切線,D是切點(diǎn),E是OB的中點(diǎn),當(dāng)BC=2時(shí),求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com