【題目】體育文化用品商店購(gòu)進(jìn)籃球和排球共20個(gè),進(jìn)價(jià)和售價(jià)如下表所示,全部銷售完后共獲利潤(rùn)260.

1)購(gòu)進(jìn)籃球和排球各多少個(gè)?

2)銷售6個(gè)排球的利潤(rùn)與銷售幾個(gè)籃球的利潤(rùn)相等?

【答案】1)購(gòu)進(jìn)籃球12個(gè),購(gòu)進(jìn)排球8個(gè);(2)銷售6個(gè)排球的利潤(rùn)與銷售4個(gè)籃球的利潤(rùn)相等.

【解析】

1)設(shè)購(gòu)進(jìn)籃球x個(gè),購(gòu)進(jìn)排球y個(gè),根據(jù)等量關(guān)系:①籃球和排球共20個(gè)②全部銷售完后共獲利潤(rùn)260元可得方程組,解方程組即可;

2)根據(jù)表格可得,銷售一個(gè)籃球利潤(rùn)為15元,銷售一個(gè)排球利潤(rùn)為10元,計(jì)算出銷售6個(gè)排球的利潤(rùn),然后即可求出答案.

解:(1)設(shè)購(gòu)進(jìn)籃球x個(gè),購(gòu)進(jìn)排球y個(gè),由題意得:,

解得:,答:購(gòu)進(jìn)籃球12個(gè),購(gòu)進(jìn)排球8個(gè);

2)由表格可得,銷售一個(gè)籃球利潤(rùn)為15元,銷售一個(gè)排球利潤(rùn)為10元,

則銷售6個(gè)排球的利潤(rùn)為:60元,

60÷15=4(個(gè)),

答:銷售6個(gè)排球的利潤(rùn)與銷售4個(gè)籃球的利潤(rùn)相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是AD、BC的中點(diǎn),P、Q分別是BM、DN的中點(diǎn).

1)求證:BMDN;

2)求證:四邊形MPNQ是菱形;

3)矩形ABCD的邊長(zhǎng)ABAD滿足什么數(shù)量關(guān)系時(shí)四邊形MPNQ為正方形,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程(組):

1;

2;

3;

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長(zhǎng)為1的正方形網(wǎng)格中

作出關(guān)于直線MN對(duì)稱的

經(jīng)過圖形平移得到,當(dāng)點(diǎn)A的坐標(biāo)是時(shí),請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,分別寫出點(diǎn),的坐標(biāo).

【答案】1)見解析;(2,,.

【解析】

(1)直接利用軸對(duì)稱圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;

(2)直接利用A點(diǎn)坐標(biāo)得出平面直角坐標(biāo)系,進(jìn)而得出各點(diǎn)坐標(biāo).

解:如圖所示:,即為所求;

點(diǎn),,

【點(diǎn)睛】

此題主要考查了軸對(duì)稱變換以及平移變換、根據(jù)點(diǎn)的坐標(biāo)建立平面直角坐標(biāo)系,正確得出對(duì)應(yīng)點(diǎn)位置是解題關(guān)鍵.

型】解答
結(jié)束】
17

【題目】計(jì)算:;計(jì)算:;解方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E點(diǎn)為DF上的點(diǎn),BAC上的點(diǎn),∠1=∠2,∠C=∠D

試說明:AC∥DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】14分)盤錦紅海灘景區(qū)門票價(jià)格80元/人,景區(qū)為吸引游客,對(duì)門票價(jià)格進(jìn)行動(dòng)態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過10人的部分打b折,設(shè)游客為x人,門票費(fèi)用為y元,非節(jié)假日門票費(fèi)用(元)及節(jié)假日門票費(fèi)用(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.

(1)a= ,b= ;

(2)直接寫出、與x之間的函數(shù)關(guān)系式;

(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到紅海灘景區(qū)旅游,兩團(tuán)共計(jì)50人,兩次共付門票費(fèi)用3040元,求A、B兩個(gè)旅游團(tuán)各多少人?

【答案】(1)6,8;(2),=;(3)A團(tuán)有20人,B團(tuán)有30人.

【解析】

試題(1)函數(shù)圖象,用購(gòu)票款數(shù)除以定價(jià)的款數(shù),得出a的值;用第11人到20人的購(gòu)票款數(shù)除以定價(jià)的款數(shù),得出b的值;

(2)利用待定系數(shù)法求正比例函數(shù)解析式求出,分x≤10與x>10,利用待定系數(shù)法求一次函數(shù)解析式求出與x的函數(shù)關(guān)系式即可;

(3)設(shè)A團(tuán)有n人,表示出B團(tuán)的人數(shù)為(50﹣n),然后分0≤n≤10與n>10兩種情況,根據(jù)(2)的函數(shù)關(guān)系式列出方程求解即可.

試題解析:(1)由圖象上點(diǎn)(10,480),得到10人的費(fèi)用為480元,a=×10=6;

由y2圖象上點(diǎn)(10,800)和(20,1440),得到20人中后10人費(fèi)用為640元,b=×10=8;

(2)設(shè)函數(shù)圖象經(jīng)過點(diǎn)(0,0)和(10,480),,=48,;

0≤x≤10時(shí),設(shè),函數(shù)圖象經(jīng)過點(diǎn)(0,0)和(10,800),,=80,,x>10時(shí),設(shè),函數(shù)圖象經(jīng)過點(diǎn)(10,800)和(20,1440),,,;

=

(3)設(shè)A團(tuán)有n人,則B團(tuán)的人數(shù)為(50﹣n),當(dāng)0≤n≤10時(shí),48n+80(50﹣n)=3040,解得n=30(不符合題意舍去),當(dāng)n>10時(shí),48n+64(50﹣n)+160=3040,解得n=20,則50﹣n=50﹣20=30.

答:A團(tuán)有20人,B團(tuán)有30人.

考點(diǎn):1.一次函數(shù)的應(yīng)用;2.分段函數(shù);3.分類討論;4.綜合題.

型】解答
結(jié)束】
23

【題目】在平面直角坐標(biāo)系xOy中有一點(diǎn),過該點(diǎn)分別作x軸和y軸的垂線,垂足分別是AB,若由該點(diǎn)、原點(diǎn)O以及兩個(gè)垂足所組成的長(zhǎng)方形的周長(zhǎng)與面積的數(shù)值相等,則我們把該點(diǎn)叫做平面直角坐標(biāo)系中的平衡點(diǎn).

請(qǐng)判斷下列各點(diǎn)中是平面直角坐標(biāo)系中的平衡點(diǎn)的是______填序號(hào)

,.

若在第一象限中有一個(gè)平衡點(diǎn)恰好在一次函數(shù)為常數(shù)的圖象上.

m、b的值;

一次函數(shù)為常數(shù)y軸交于點(diǎn)C,問:在這函數(shù)圖象上,是否存在點(diǎn)使,若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

經(jīng)過點(diǎn),且平行于x軸的直線上有平衡點(diǎn)嗎?若有,請(qǐng)求出平衡點(diǎn)的坐標(biāo);若沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,G是邊長(zhǎng)為8的正方形ABCD的邊BC上的一點(diǎn),矩形DEFG的邊EF過點(diǎn)A,GD=10.

(1)求FG的長(zhǎng);
(2)直接寫出圖中與△BHG相似的所有三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABCD中,AE平分∠BADBC邊于E,EFAECDF

1)求證:CECF

2)延長(zhǎng)AD、EF交于點(diǎn)H,延長(zhǎng)BAG,使AGCF,若AD7DF3,EH2AE,求GF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案