已知,如圖,在?ABCD中,AC、BD相交于O點(diǎn),若∠OAB=∠OBA,
(1)求證:四邊形ABCD是矩形;
(2)若作BE⊥AC于E,CF⊥BD于F,求證:BE=CF.

證明:(1)∵∠OAB=∠OBA,
∴OA=OB,
∵在?ABCD中,OA=OC,OB=OD,
∴OA+OC=OB+OD,即AC=BD,
∴?ABCD是矩形.

(2)∵BE⊥AC于E,CF⊥BD于F,
∴∠BEO=∠CFO=90°,
又由(1)OB=OC,
在△BOE和△COF中,
∴△BOE≌△COF,(AAS)
∴BE=CF.
分析:(1)根據(jù)矩形的判定定理,欲求證四邊形ABCD是矩形,已知OA=OC、OB=OD再證AC=BD即可,由∠OAB=∠OBA易證.
(2)根據(jù)三角形全等的判定,欲求證BE=CF,只需證△OBE≌△OCF即可,根據(jù)AAS容易證出.
點(diǎn)評:此題難度中等,考查了矩形的判定、全等三角形的判定和性質(zhì)及平行四邊形性質(zhì)的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊答案