如圖:直角梯形ABCD中,AD∥BC,∠B=90°,M是AB上一點,且MC、MD分別是∠BCD,∠CDA的平分線,若AD=1,BC=3,CD的長為________.

4
分析:利用角平分線的性質(zhì)和中位線的性質(zhì)即可計算.
解答:解:作ME∥AD,交CD于E,
可得∠MDE=∠EMD,∠ECM=∠EMC
∴DE=ME,CE=ME
∴DE=CE
∴ME為梯形的中位線
∴ME=(1+3)÷2=2
∴CD=4.
點評:此題主要考查角平分線的性質(zhì)和中位線的性質(zhì),作輔助線是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點E是AB邊上一點,AE=BC,DE⊥EC,取DC的中點F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長FE交BC于點G,點G恰好是BC的中點,若AB=6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點E,連接CE,將△BCE繞點C順時針方向旋轉(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點,AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊答案