已知,如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于A、B兩點,A點坐標(biāo)為(2,1),分別以A、B為圓心的圓與x軸相切,則圖中兩個陰影部分面積的和為   
【答案】分析:由于反比例函數(shù),正比例函數(shù)的圖象關(guān)于原點對稱,根據(jù)A點坐標(biāo)為(2,1)可以確定B的坐標(biāo),然后根據(jù)圖象對稱性的特點即可求出兩個陰影部分面積的和.
解答:解:∵反比例函數(shù)、正比例函數(shù)的圖象關(guān)于原點對稱,
又A點坐標(biāo)為(2,1),
則B點坐標(biāo)為(-2,-1),
又∵圓與x軸相切,
∴圓的半徑為1,
而圖中兩個圓的陰影部分剛好可以拼成一個完整的圓,
所以兩個陰影部分面積的和為π.
故答案為:π.
點評:此題綜合考查了反比例函數(shù)的圖象和性質(zhì),正比例函數(shù)的圖象和性質(zhì)及圓等多個知識點,此題難度稍大,綜合性比較強,注意對各個知識點的靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)y=x與反比例函數(shù)y=
1x
的圖象交于A、B兩點.
(1)求出A、B兩點的坐標(biāo);
(2)根據(jù)圖象求使正比例函數(shù)值大于反比例函數(shù)值的x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正比例函數(shù)y1=x,反比例函數(shù)y2=
1
x
,由y1,y2構(gòu)造一個新函數(shù)y=x+
1
x
其圖象如圖所示.(因其圖精英家教網(wǎng)象似雙鉤,我們稱之為“雙鉤函數(shù)”).給出下列幾個命題:
①該函數(shù)的圖象是中心對稱圖形;
②當(dāng)x<0時,該函數(shù)在x=-1時取得最大值-2;
③y的值不可能為1;
④在每個象限內(nèi),函數(shù)值y隨自變量x的增大而增大.
其中正確的命題是
 
.(請寫出所有正確的命題的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)y=ax(a≠0)的圖象與反比例函致y=
kx
(k≠0)的圖象的一個交點為A(-1,2-k2),另一個交點為B,且A、B關(guān)于原點O對稱,D為OB的中點,過點D的線段OB的垂直平分線與x軸、y軸分別交于C、E.
(1)寫出反比例函數(shù)和正比例函數(shù)的解析式;
(2)試計算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正比例函數(shù)y1=x,反比例函數(shù)y2=
1
x
,由y1,y2構(gòu)造一個新函數(shù)y=x+
1
x
,其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數(shù)”).給出下列幾個命題:
①該函數(shù)的圖象是中心對稱圖形;
②當(dāng)x<0時,該函數(shù)在x=-1時取得最大值-2;
③y的值不可能為1;
④在每個象限內(nèi),函數(shù)值y隨自變量x的增大而增大.
其中正確的命題是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過三點A(-1,0),B(3,0),C(0,3),它的頂點為M,又正比例函數(shù)y=kx的圖象與二次函數(shù)相交于兩點D、E,且P是線段DE的中點.
(1)求該二次函數(shù)的解析式,并求函數(shù)頂點M的坐標(biāo);
(2)已知點E(2,3),且二次函數(shù)的函數(shù)值大于正比例函數(shù)值時,試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)當(dāng)k為何值時且0<k<2,求四邊形PCMB的面積為
93
16

(參考公式:已知兩點D(x1,y1),E(x2,y2),則線段DE的中點坐標(biāo)為(
x1+x2
2
,
y1+y2
2
)

查看答案和解析>>

同步練習(xí)冊答案