如圖,⊙O是等邊三角形ABC的外接圓,D、E是⊙O上的兩點(diǎn),則∠D=________°,∠E=________°.

答案:60,120
解析:

∠D=∠BAC=60°.連結(jié)CE、EB,則∠CEA=∠ABC=60°.∠CEB=∠CAB=60°,故∠AEB=120°.


提示:

利用同弧所對的等圓周角進(jìn)行轉(zhuǎn)化,是圓中求角度的常用方法.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.
(1)當(dāng)MN和AB之間的距離為0.5米時,求此時△EMN的面積;
(2)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(3)請你探究△EMN的面積S(平方米)有無最大值?若有,請求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,以△ABC的邊AB、AC為邊的等邊三角ABD和等邊三角形ACE,四邊形ADFE是平行四邊形.
(1)當(dāng)∠BAC滿足什么條件時,四邊形ADFE是矩形;
(2)當(dāng)∠BAC滿足什么條件時,平行四邊形ADFE不存在;
(3)當(dāng)△ABC分別滿足什么條件時,平行四邊形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•萊蕪)某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿,△EMN是隨MN滑動而變化的三角通風(fēng)窗(陰影部分均不通風(fēng)).
(1)當(dāng)MN和AB之間的距離為0.5米時,求此時△EMN的面積.
(2)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù).
(3)請你探究△EMN的面積S(平方米)有無最大值?若有,請求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以△ABC的邊AB、AC為邊的等邊三角ABD和等邊三角形ACE,四邊形ADFE是平行四邊形
(1)當(dāng)∠BAC滿足什么條件時,平行四邊形ADFE是矩形?
(2)當(dāng)∠BAC滿足什么條件時,平行四邊形ADFE不存在?
(3)當(dāng)△ABC分別滿足什么條件時,平行四邊形ADFE是正方形?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),點(diǎn)P是x軸上一動點(diǎn),以線段AP為一邊,在其一側(cè)作等邊三角線APQ。當(dāng)點(diǎn)P運(yùn)動到原點(diǎn)O處時,記Q得位置為B。
(1)求點(diǎn)B的坐標(biāo);
(2)求證:當(dāng)點(diǎn)P在x軸上運(yùn)動(P不與Q重合)時,∠ABQ為定值;
(3)是否存在點(diǎn)P,使得以A、O、Q、B為頂點(diǎn)的四邊形是梯形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案