如圖,在直角坐標系中,點A、B的坐標分別是(3,0)、(0,4),Rt△ABO內(nèi)心的坐標是( )

A.(
B.(,2)
C.(1,1)
D.(,1)
【答案】分析:欲求內(nèi)心坐標,需先求出內(nèi)接圓的半徑;根據(jù)點A、B的坐標,可求得OA、OB的長,進而可由勾股定理求得AB的長;根據(jù)直角三角形內(nèi)切圓半徑公式:R=,即可求得△OAB的內(nèi)切圓半徑,由此得解.
解答:解:設(shè)△OAB的內(nèi)切圓半徑為R;
∵A(3,0),B(0,4),
∴OA=3,OB=4;
Rt△OAB中,由勾股定理得:AB==5,
∴R=(OA+OB-AB)=1;
所以Rt△OAB的內(nèi)心坐標為(1,1),故選C.
點評:此題主要考查了三角形內(nèi)心的性質(zhì)及點的坐標意義;需要識記的內(nèi)容有:
直角三角形內(nèi)切圓半徑公式:R=(a、b為直角邊,c為斜邊).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標系中,O為原點.反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點A,點A的縱坐標是橫坐標的
3
2
倍.
(1)求點A的坐標;
(2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點D在反比例函數(shù)y=
6
x
的圖象上,且點D在直線AC的右側(cè),作DE⊥x軸于點E,當(dāng)△ABC與△CDE相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6

(2)三角形(2013)的直角頂點的坐標是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊答案