如圖,已知AD是△ABC的外接圓的直徑,AD=13cm,cosB=,則AC的長等于( )

A.5 cm
B.6 cm
C.10 cm
D.12 cm
【答案】分析:先根據(jù)圓周角定理得出∠B=∠ADC,∠ACD=90°,再根據(jù)銳角三角函數(shù)的定義解答即可.
解答:解:∵∠B與∠ADC是同弧所對的圓周角,
∴∠B=∠ADC,
∴cosB=cos∠ADC=
∵AD是△ABC的外接圓的直徑,
∴∠ACD=90°,
∵在Rt△ACD中,AD=13cm,
∴cos∠ADC===,
∴CD=5,
∴AC===12cm.
故選D.
點評:本題考查的是圓周角定理及銳角三角函數(shù)的定義,熟知在“同圓或等圓中同弧或等弧所對的圓周角相等”是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知AD是△ABC的角平分線,CE⊥AD,垂足O,CE交AB于E,則下列命題:①AE=AC,②CO=OE,③∠AEO=∠ACO,④∠B=∠ECB.其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知AD是△ABC的角平分線,在不添加任何輔助線的前提下,要使△AED≌△AFD,需添加一個條件是:
AE=AF或∠EDA=∠FDA
,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AD是等腰三角形ABC底邊上的高,AD與底邊BC的比是2:3,等腰三角形的面積是12cm,求等腰三角形ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的中線,∠ADC=45°,把△ABC沿AD對折,點C落在點E的位置,連接BE,若BC=6cm.
(1)求BE的長;
(2)當(dāng)AD=4cm時,求四邊形BDAE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的角平分線,DE∥AB交AC于點E.那么△ADE是等腰三角形嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案