(本題滿(mǎn)分14分,第(1)、(2)小題每小題滿(mǎn)分5分,第(3)小題滿(mǎn)分4分)
已知,在邊長(zhǎng)為6的正方形ABCD的兩側(cè)如圖作正方形BEFG、正方形DMNK,恰好使得N、A、F三點(diǎn)在一直線(xiàn)上,聯(lián)結(jié)MF交線(xiàn)段AD于點(diǎn)P,聯(lián)結(jié)NP,設(shè)正方形BEFG的邊長(zhǎng)為x,正方形DMNK的邊長(zhǎng)為y,
(1)求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)當(dāng)△NPF的面積為32時(shí),求x的值;
(3)以P為圓心,AP為半徑的圓能否與以G為圓心,GF為半徑的圓相切,若能請(qǐng)求x的值,若不能,請(qǐng)說(shuō)明理由。
(1)∵正方形BEFG、正方形DMNK、正方形ABCD
∴∠E=∠F=90O,AE//MC,MC//NK              
∴AE//NK      ∴∠KNA=∠EAF
……………………………………………………………(2分)
   即   ……………………………………(1分)
     …………………………………………(2分)
(2)由(1)可知:  ∴
∵正方形DMNK   ∴    ∴
     ………………………………………………………(2分)
……………………………………………………(1分)
 ……………………………………………(1分)
     ∴………………………………………………(1分)
(3)聯(lián)結(jié)PG,延長(zhǎng)FG交AD于H點(diǎn),則。
易知:;;!1分)
①當(dāng)兩圓外切時(shí),在中, (1分)
解得:(負(fù)值舍去)
②當(dāng)兩圓內(nèi)切時(shí),在中,  即,
方程無(wú)解                   …………………………(1分)
所以,當(dāng)時(shí),這兩個(gè)圓相切!馕:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分14分,第(1)小題4分,第(2)小題①6分、第(2)小題②4分)

直角三角板ABC中,∠A=30°,BC=1.將其繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)一個(gè)角≠ 90°),得到Rt△,

(1)如圖9,當(dāng)邊經(jīng)過(guò)點(diǎn)B時(shí),求旋轉(zhuǎn)角的度數(shù);

(2)在三角板旋轉(zhuǎn)的過(guò)程中,邊與AB所在直線(xiàn)交于點(diǎn)D,過(guò)點(diǎn) D作DE∥邊于點(diǎn)E,聯(lián)結(jié)BE.

①當(dāng)時(shí),設(shè),求之間的函數(shù)解析式及定義域;

②當(dāng)時(shí),求的長(zhǎng).

      

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011屆上海市普陀區(qū)4月中考模擬數(shù)學(xué)試卷 題型:解答題

(本題滿(mǎn)分14分,第(1)小題4分,第(2)小題①6分、第(2)小題②4分)
直角三角板ABC中,∠A=30°,BC=1.將其繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)一個(gè)角≠ 90°),得到Rt△,
(1)如圖9,當(dāng)邊經(jīng)過(guò)點(diǎn)B時(shí),求旋轉(zhuǎn)角的度數(shù);
(2)在三角板旋轉(zhuǎn)的過(guò)程中,邊與AB所在直線(xiàn)交于點(diǎn)D,過(guò)點(diǎn) D作DE∥邊于點(diǎn)E,聯(lián)結(jié)BE.
①當(dāng)時(shí),設(shè),求之間的函數(shù)解析式及定義域;
②當(dāng)時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(天津卷)數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分14分,第(1)小題滿(mǎn)分4分,第(2)、(3)小題滿(mǎn)分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.點(diǎn)PAB邊上任意一點(diǎn),直線(xiàn)PEAB,與邊ACBC相交于E.點(diǎn)M在線(xiàn)段AP上,點(diǎn)N在線(xiàn)段BP上,EMEN
(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),求CM的長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)E在邊AC上時(shí),點(diǎn)E不與點(diǎn)AC重合,設(shè)APx,BNy,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)的定義域;
(3)若△AME∽△ENB(△AME的頂點(diǎn)A、ME分別與△ENB的頂點(diǎn)E、NB對(duì)應(yīng)),求AP長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(天津卷)數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分14分,第(1)小題滿(mǎn)分4分,第(2)、(3)小題滿(mǎn)分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.點(diǎn)PAB邊上任意一點(diǎn),直線(xiàn)PEAB,與邊ACBC相交于E.點(diǎn)M在線(xiàn)段AP上,點(diǎn)N在線(xiàn)段BP上,EMEN,

(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),求CM的長(zhǎng);

(2)如圖2,當(dāng)點(diǎn)E在邊AC上時(shí),點(diǎn)E不與點(diǎn)A、C重合,設(shè)APxBNy,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)的定義域;

(3)若△AME∽△ENB(△AME的頂點(diǎn)A、ME分別與△ENB的頂點(diǎn)E、NB對(duì)應(yīng)),求AP的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市考模擬數(shù)學(xué)試卷 題型:解答題

(本題滿(mǎn)分14分,第(1)、(2)小題每小題滿(mǎn)分5分,第(3)小題滿(mǎn)分4分)

已知,在邊長(zhǎng)為6的正方形ABCD的兩側(cè)如圖作正方形BEFG、正方形DMNK,恰好使得N、A、F三點(diǎn)在一直線(xiàn)上,聯(lián)結(jié)MF交線(xiàn)段AD于點(diǎn)P,聯(lián)結(jié)NP,設(shè)正方形BEFG的邊長(zhǎng)為x,正方形DMNK的邊長(zhǎng)為y,

(1)求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)當(dāng)△NPF的面積為32時(shí),求x的值;

(3)以P為圓心,AP為半徑的圓能否與以G為圓心,GF為半徑的圓相切,若能請(qǐng)求x的值,若不能,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案